
Chapter 2
Passive 3D Imaging

Stephen Se and Nick Pears

Abstract We describe passive 3D imaging systems that recover 3D information
from scenes that are illuminated only with ambient lighting. Although we briefly
overview monocular reconstruction, much of the material is concerned with using
the geometry of stereo 3D imaging to formulate estimation problems. Firstly, we
present an overview of the common techniques used to recover 3D information from
camera images. Secondly, we discuss camera modeling and camera calibration as an
essential introduction to the geometry of the imaging process and the estimation of
geometric parameters. Thirdly, we focus on 3D recovery frommultiple views, which
can be obtained using multiple cameras at the same time (stereo), or a single moving
camera at different times (structure from motion). Epipolar geometry and finding
image correspondences associated with the same 3D scene point are two key aspects
for such systems, since epipolar geometry establishes the relationship between two
camera views, and depth information can be inferred from the correspondences. The
details of both stereo and structure from motion, the two essential forms of multiple-
view 3D reconstruction technique, are presented. We include a brief overview of the
recent trend of applying deep learning to passive 3D imaging. Finally, we present
several real-world applications.

2.1 Introduction

Passive 3D imaging has been studied extensively for several decades, and it is a core
topic in many of the major computer vision conferences and journals. Essentially,
a passive 3D imaging system, also known as a passive 3D vision system, is one in
which we can recover 3D scene information, without that system having to project
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its own source of light or other source of electromagnetic radiation (EMR) onto that
scene. By contrast, an active 3D imaging system has an EMR projection subsystem,
which is commonly in the infrared or visible wavelength region.

Several passive 3D information sources (cues) relate closely to human vision and
other animal vision. For example, in stereo vision, fusing the images recorded by our
two eyes and exploiting the difference between them gives us a sense of depth. The
aim of this chapter is to present the fundamental principles of passive 3D imaging
systems so that readers can understand their strengths and limitations, as well as how
to implement a subset of such systems, namely, those that exploit multiple views of
the scene.

Passive,multiple-view 3D imaging originates from themature field of photogram-
metry and, more recently, from the younger field of computer vision. In contrast to
photogrammetry, computer vision applications rely on fast, automatic techniques,
sometimes at the expense of precision. Our focus is on the computer vision perspec-
tive.

A recurring theme of this chapter is that we consider some aspect of the geometry
of 3D imaging and formulate a linear least squares estimation problem to estimate the
associated geometric parameters. These estimates can then optionally be improved,
depending on the speed and accuracy requirements of the application, using the linear
estimate as an initialization for a non-linear least squares refinement. In contrast to
the linear stage, this non-linear stage usually optimizes a cost function that has a
well-defined geometric meaning.1 Multi-view 3D reconstruction is now a mature
technology. Figure2.1 shows a 3D reconstruction of a building from a 2D image
sequence.

2.1.1 Chapter Outline

Wewill start with an overview of various techniques for passive 3D imaging systems,
including single-view andmultiple-view approaches. However, themain body of this
chapter is focused on 3D recovery frommultiple views, which can be obtained using
multiple cameras simultaneously (stereo) or a single moving camera (structure from
motion). A good starting point to understand this subject matter is knowledge of
the image formation process in a single camera and how to capture this process in
a camera model. This modeling is presented in Sect. 2.3, and the following section
describes camera calibration: the estimation of the parameters in the developed cam-
era model. In order to understand how to search efficiently for left–right feature pairs
that correspond to the same scene point in a stereo image pair (the correspondence
problem), a good understanding of two-view geometry is required, which establishes
the relationship between two camera views. Hence, Sect. 2.5 details this geometry,
known as epipolar geometry, and shows how it can be captured and used in linear
(vector–matrix) form. Following this, we can begin to consider the correspondence

1Parameters obtained from a linear estimate are often a complex function of geometric parameters.
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Fig. 2.1 Top: partial image sequence of the library building at theChineseUniversity ofHongKong.
Bottom: 3D reconstruction of the library building, obtained automatically from the uncalibrated
image sequence (left: Delaunay triangulation; right: with texture). Figure courtesy of [16]

problem and the first step is to simplify the search to be across the same horizontal
scan lines in each image, by warping the stereo image pair in a process known as
rectification. This is described in Sect. 2.6. The following section then focuses on the
correspondence search itself, and then Sect. 2.8 details the process of generating a
3D point cloud from a set of image correspondences. A brief overview is included on
how deep learning techniques, such as convolutional neural networks and recurrent
neural networks, have been applied to passive 3D imaging recently and had had a
big impact. Despite this, we believe that it is important that this chapter covers the
underlying mathematical modeling explicitly for a good understanding of the subject
area.

With increasing computer processing power and decreasing camera prices, many
real-world applications of passive 3D imaging systems have been emerging in recent
years. Thus, later in the chapter (Sect. 2.10), some recent applications involving such
systems are discussed. Several commercially available stereo vision systemswill first
be presented, as well as stereo cameras for people counting in retail analytics. We
then describe 3D modeling systems that generate photo-realistic 3D models from
image sequences, which have a wide range of applications. Later in this section,
passive 3D imaging systems for mobile robot pose estimation and visual SLAM are
described. In the following section, multiple-view passive 3D imaging systems are
compared to their counterpart within active 3D imaging systems.

The final sections in the chapter cover concluding remarks, further reading, soft-
ware resources, questions, and exercises for the reader.
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2.2 An Overview of Passive 3D Imaging Systems

Most cameras today use either a Charge Coupled Device (CCD) image sensor or a
Complementary Metal Oxide Semiconductor (CMOS) sensor, both of which capture
light and convert it into electrical signals. Historically, CCD sensors have provided
higher quality, lower noise images, whereas CMOS sensors have been cheaper, more
compact, and consume less power. Presently, CMOS sensors are more prevalent
perhaps due to their now highly favorable performance-to-cost ratio. The cameras
employing such image sensors can be hand-held or mounted on different platforms
such as Unmanned Ground Vehicles (UGVs), Unmanned Aerial Vehicles (UAVs),
Unmanned Underwater Vehicles (UUVs), and optical satellites.

Passive 3D vision techniques can be categorized as follows: (i) Multiple-view
approaches and (ii) single-view approaches.We outline each of these in the following
two subsections.

2.2.1 Multiple-View Approaches

In multiple-view approaches, the scene is observed from two or more viewpoints,
by either multiple cameras at the same time (stereo) or a single moving camera at
different times (structure from motion). From the gathered images, the system is to
infer information on the 3D structure of the scene.

Stereo refers to multiple images taken simultaneously using two or more cameras,
which are collectively called a stereo camera. For example, binocular stereo uses
two viewpoints, trinocular stereo uses three viewpoints, or alternatively there may
be many cameras distributed around the viewing sphere of an object. Stereo derives
from the Greek word stereos meaning solid, thus implying a 3D form of visual
information. In this chapter, we will use the term stereo vision to imply a binocular
stereo system. At the top of Fig. 2.2, we show an outline of such a system.

If we can determine that imaged points in the left and right cameras correspond
to the same scene point, then we can determine two directions (3D rays) along
which the 3D point must lie. (The camera parameters required to convert the 2D
image positions to 3D rays come from a camera calibration procedure.) Then, we
can intersect the 3D rays to determine the 3D position of the scene point, in a process
known as triangulation. A scene point, X, is shown in Fig. 2.2 as the intersection
of two rays (colored black) and a nearer point is shown by the intersection of two
different rays (colored blue). Note that the difference between left and right image
positions, thedisparity, is greater for the nearer scene point and inversely proportional
to the range. In fact, at some maximum range, the disparity becomes so small and
corruptable by noise, which usefully accurate range measurements can no longer
be made. Compared to some other 3D imaging modalities, stereo is relatively short
range. Also, regions close to the stereo camera rig are outside of the field of view
of either one or both cameras, and so stereo cameras have some defined minimum
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Fig. 2.2 Top: Plan view of the operation of a simple stereo rig. Here the optical axes of the two
cameras are parallel to form a rectilinear rig. However, often the cameras are rotated toward each
other (verged) to increase the overlap in their fields of view. Center: The commercial ZED stereo
camera, supplied by Stereolabs [82]. Bottom: Left and right views of a stereo pair (images courtesy
of [74])
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range of operation. Note also that the scene surface colored red cannot be observed
by the right camera, inwhich case no 3D shapemeasurement can bemade. This scene
portion is sometimes referred to as a missing part and is the result of self-occlusion.
The baseline length of a stereo camera is a trade-off between accuracy and missing
parts.

A modeling point to note is that, although the real image sensor is behind the lens,
it is common practice to envisage and use a conceptual image position in front of
the lens so that the image is the same orientation as the scene (i.e., not inverted top
to bottom and left to right), and this is shown by the dashed horizontal line in the
figure.

Despite the apparent simplicity of Fig. 2.2(top), a large part of this chapter is
required to present the various aspects of stereo 3D imaging in detail, such as cali-
bration, determining left-to-right image correspondences and dense 3D shape recon-
struction. A typical commercial stereo camera, called the ZED and supplied by
Stereolabs [82], is shown in the center of Fig. 2.2, although many computer vision
researchers build their own stereo rigs, using off-the-shelf digital cameras and a slot-
ted steel bar mounted on a tripod. Finally, at the bottom of Fig. 2.2, we show the left
and right views of a typical stereo pair taken from the Middlebury webpage [74].

In contrast to stereo vision, structure from motion (SfM) refers to a single moving
camera scenario, where image sequences are captured over a period of time. While
stereo refers to fixed relative viewpoints with synchronized image capture, SfM
refers to variable viewpoints with sequential image capture. For image sequences
captured at a high frame rate, optical flow can be computed, which estimates the
motion field from the image sequences, based on the spatial and temporal variations
of the image brightness. Using the local brightness constancy alone, the problem is
under-constrained as the number of variables is twice the number of measurements.
Therefore, it is augmented with additional global smoothness constraints, so that the
motion field can be estimated by minimizing an energy function [41, 49]. 3D motion
of the camera and the scene structure can then be recovered from the motion field.

2.2.2 Single-View Approaches

In contrast to these two multiple-view approaches, 3D shape can be inferred from
a single viewpoint using information sources (cues) such as shading, texture, and
focus. The collection of such approaches is sometimes termed Shape from X. Not
surprisingly, the mentioned techniques are called Shape from Shading, Shape from
Texture, and Shape from Focus, respectively.

Shading on a surface can provide information about local surface orientations
and overall surface shape, as illustrated in Fig. 2.3, where the technique in [42] has
been used. Shape from shading [40] uses the shades in a grayscale image to infer
the shape of the surfaces, based on the reflectance map which links image intensity
with surface orientation. After the surface normals have been recovered at each
pixel, they can be integrated into a depth map using regularized surface fitting. The
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Fig. 2.3 Examples of synthetic shape from shading images (left column) and corresponding shape
from shading reconstruction (right column)

computations involved are considerably more complicated than for multiple-view
approaches. Moreover, various assumptions, such as uniform albedo, reflectance,
and known light source directions, need to be made and there are open issues with
convergence to a solution. The survey in [97] reviews various techniques and provides
some comparative results. The approach can be enhanced when lights shining from
different directions can be turned on and off separately. This technique is known as
photometric stereo [91], and it takes two or more images of the scene from the same
viewpoint but under different illuminations in order to estimate the surface normals.

The foreshortening of regular patterns depends on how the surface slants away
from the camera viewing direction and provides another cue on the local surface
orientation. Shape from texture [34] estimates the shape of the observed surface
from the distortion of the texture created by the imaging process, as illustrated in
Fig. 2.4. Therefore, this approach works only for images with texture surfaces and
assumes the presence of a regular pattern. Shape from shading is combined with
shape from texture in [90] where the two techniques can complement each other.
While the texture components provide information in textured region, shading helps
in the uniform region to provide detailed information on the surface shape.
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Fig. 2.4 Examples of synthetic shape from texture images (a, c) and corresponding surface normal
estimates (b, d). Figure courtesy of [34]

Shape from focus [58, 65] estimates depth using two input images captured from
the same viewpoint but at different camera depths of field. The degree of blur is a
strong cue for object depth as it increases as the object moves away from the camera’s
focusing distance. The relative depth of the scene can be constructed from the image
blur where the amount of defocus can be estimated by averaging the squared gradient
values in a region.

Another approach that is specialized for a particular object class is the Analysis
by Synthesis approach. Here, the assumption is that we have a 3Dmodel of the object
class of interest, such as the human face [10] or human head [22]. If we alsomodel all
the physical components that generate an image, such as surface reflectance, scene
lighting, and the projective imaging processes, and if we parameterize these model
components accurately by model fitting, we can synthesize an image that is very
similar to the actual image. The 3D structure obtained from the parametrization of
the 3D model is then the 3D reconstruction of the single-viewpoint image [9].

Single-viewmetrology [21] allows shape recovery from a single perspective view
of a scene given some geometric information determined from the image. By exploit-
ing scene constraints such as orthogonality and parallelism, a vanishing line and a
vanishing point in a single image can be determined. Relativemeasurements of shape
can then be computed, which can be upgraded to absolute metric measurements if
the dimensions of a reference object in the scene are known.

While 3D recovery from a single view is possible, such methods are often not
practical in terms of either robustness or speed or both. Therefore, themost commonly
used approaches are based on multiple views, which is the focus of this chapter.
The first step to understanding such approaches is to understand how to model the
image formation process in the cameras of a stereo rig. Then we need to know how to
estimate the parameters of this model. Thus camera modeling and camera calibration
are discussed in the following two main sections.
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Fig. 2.5 Projection based on a pinhole camera model where a 3D object is projected onto the image
plane. Note that, although the real image plane is behind the camera center, it is common practice
to employ a virtual image plane in front of the camera, so that the image is conveniently at the same
orientation as the scene

2.3 Camera Modeling

A camera is a device in which the 3D scene is projected down onto a 2D image.
The most commonly used projection in computer vision is 3D perspective projec-
tion. Figure2.5 illustrates perspective projection based on the pinhole camera model,
whereC is the position of the pinhole, termed the camera center or the center of pro-
jection. Note that, although the real image plane is behind the camera center, it is
common practice to employ a virtual image plane in front of the camera, so that the
image is conveniently at the same orientation as the scene.

Clearly, from this figure, the path of imaged light is modeled by a ray that passes
from a 3D world pointX through the camera center. The intersection of this ray with
the image plane defines where the image, xc, of the 3D scene point, X, lies. We can
reverse this process and say that, for some point on the image plane, its corresponding
scene point must lie somewhere along the ray connecting the center of projection,C,
and that imaged point, xc. We refer to this as back-projecting an image point to an
infinite ray that extends out into the scene. Since we do not know how far along the
ray the 3D scene point lies, explicit depth information is lost in the imaging process.
This is the main source of geometric ambiguity in a single image and is the reason
why we refer to the recovery of the depth information from stereo and other cues as
3D reconstruction.

Before we embark on our development of a mathematical camera model, we need
to digress briefly and introduce the concept of homogeneous coordinates (also called
projective coordinates), which is the natural coordinate system of analytic projective
geometry and hence has wide utility in geometric computer vision.
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2.3.1 Homogeneous Coordinates

We are all familiar with expressing the position of some point in a plane using a
pair of coordinates as [x, y]T . In general for such systems, n coordinates are used
to describe points in an n-dimensional space, Rn . In analytic projective geometry,
which deals with algebraic theories of points and lines, such points and lines are
typically described by homogeneous coordinates, where n + 1 coordinates are used
to describe points in an n-dimensional space. For example, a general point in a
plane is described as x = [x1, x2, x3]T , and the general equation of a line is given by
lT x = 0 where l = [l1, l2, l3]T are the homogeneous coordinates of the line.2 Since
the right-hand side of this equation for a line is zero, it is a homogeneous equation,
and any non-zero multiple of the point λ[x1, x2, x3]T is the same point; similarly,
any non-zero multiple of the line’s coordinates is the same line. The symmetry in
this equation is indicative of the fact that points and lines can be exchanged in many
theories of projective geometry; such theories are termed dual theories. For example,
the cross-product of two lines, expressed in homogeneous coordinates, yields their
intersecting point, and the cross-product of a pair of points gives the line between
them. This is very useful for manipulating points and lines in the image plane. For
example, if we had four image points, then to determine the point of intersection, x,
of any two lines defined by any two points we simply compute:

x = (xi × x j ) × (xk × xl).

Note that we can easily convert from homogeneous to inhomogeneous coordi-
nates, simply by dividing through by the third element, thus [x1, x2, x3]T maps to
[ x1x3 , x2

x3
]T . A key point about homogeneous coordinates is that they allow the relevant

transformations in the imaging process to be represented as linear mappings, which
of course are expressed as matrix–vector equations. However, although the mapping
between homogeneous world coordinates of a point and homogeneous image coor-
dinates is linear, the mapping from homogeneous to inhomogeneous coordinates is
non-linear, due to the required division.

The use of homogeneous coordinates fitswell with the relationship between image
points and their associated back-projected rays into the scene space. Imagine a math-
ematical (virtual) image plane at a distance of one metric unit in front of the center
of projection, as shown in Fig. 2.5. With the camera center, C, the homogeneous
coordinates [x, y, 1]T define a 3D scene ray as [λx, λy, λ]T , where λ is the unknown
distance (λ > 0) along the ray. Thus there is an intuitive link between the depth
ambiguity associated with the 3D scene point and the equivalence of homogeneous
coordinates up to an arbitrary non-zero scale factor.

Extending the idea of thinking of homogeneous image points as 3D rays, consider
the cross-product of two homogeneous points. This gives a direction that is the normal

2Youmaywish to compare lT x = 0 to twowell-known parameterizations of a line in the (x,y) plane,
namely, ax + by + c = 0 and y = mx + c and, in each case, write down homogeneous coordinates
for the point x and the line l.
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of the plane that contains the two rays. The line between the two image points is
the intersection of this plane with the image plane. The dual of this is that the cross-
product of two lines in the image plane gives a point on the image plane whose
associated 3D ray represents the intersection of their associated planes. The 3D ray
has a direction orthogonal to the normals of both of these planes and is the direction of
the ray that defines the point of intersection of the two lines in the image plane. Note
that any point with its third homogeneous element zero defines a ray parallel to the
image plane and hence meets it at infinity. Such a point is termed a point at infinity,
and there is an infinite set of these points [x1, x2, 0]T that lie on the line at infinity
[0, 0, 1]T ; Finally, note that the 3-tuple [0, 0, 0]T has no meaning and is undefined.
For further reading on homogeneous coordinates and projective geometry, please see
[20, 38].

2.3.2 Perspective Projection Camera Model

We now return to the perspective projection (central projection) camera model, and
wenote that itmaps 3Dworld points in standardmetric units into the pixel coordinates
of an image sensor. It is convenient to think of this mapping as the concatenation of
three successive stages:

1. A six degree-of-freedom (DOF) rigid transformation consisting of a rotation,R (3
DOF), and translation, t (3 DOF), that maps points expressed inworld coordinates
to the same points expressed in camera-centered coordinates.

2. A perspective projection from the 3D world to the 2D image plane.
3. A mapping from metric image coordinates to pixel coordinates.

We now discuss each of these projective mappings in turn.

2.3.2.1 Camera Modeling: The Coordinate Transformation

As shown in Fig. 2.5, the camera frame has its (X,Y) plane parallel to the image
plane and Z is in the direction of the principal axis of the lens and encodes depth
from the camera. Suppose that the camera center has inhomogeneous position C̃ in
the world frame3 and the rotation of the camera frame is Rc relative to the world
frame orientation. This means that we can express any inhomogeneous camera frame
points as:

X̃c = RT
c (X̃ − C̃) = RX̃ + t. (2.1)

HereR = RT
c represents the rigid rotation and t = −RT

c C̃ represents the rigid trans-
lation that maps a scene point expressed in the world coordinate frame into a camera-

3We use a tilde to differentiate n-tuple inhomogeneous coordinates from (n+1)-tuple homogeneous
coordinates.
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centered coordinate frame. Equation2.1 can be expressed as a projective mapping,
namely, one that is linear in homogeneous coordinates, to give

⎡
⎢⎢⎣
Xc

Yc
Zc

1

⎤
⎥⎥⎦ =

[
R t
0T 1

]
⎡
⎢⎢⎣
X
Y
Z
1

⎤
⎥⎥⎦ .

We denote Pr as the 4 × 4 homogeneous matrix representing the rigid coordinate
transformation in the above equation.

2.3.2.2 Camera Modeling: Perspective Projection

Observing the similar triangles in the geometry of perspective imaging, we have

xc
f

= Xc

Zc
,

yc
f

= Yc
Zc

, (2.2)

where (xc, yc) is the position (metric units) of a point in the camera’s image plane
and f is the distance (metric units) of the image plane to the camera center. (This is
usually set to the focal length of the camera lens.) The two equations above can be
written in linear form as

Zc

⎡
⎣
xc
yc
1

⎤
⎦ =

⎡
⎣

f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣
Xc

Yc
Zc

1

⎤
⎥⎥⎦ .

We denote Pp as the 3 × 4 perspective projection matrix, defined by the value of f ,
in the above equation. If we consider an abstract image plane at f = 1, then points
on this plane are termed normalized image coordinates4 and from Eq.2.2, these are
given by

xn = Xc

Zc
, yn = Yc

Zc
.

2.3.2.3 Camera Modeling: Image Sampling

Typically, the image on the image plane is sampled by an image sensor, such as a
CCD or CMOS device, at the locations defined by an array of pixels. The final part of
camera modeling defines how that array is positioned on the [xc, yc]T image plane,

4We need to use a variety of image coordinate normalizations in this chapter. For simplicity, we
will use the same subscript n, but it will be clear about how the normalization is achieved.
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so that pixel coordinates can be generated. In general, pixels in an image sensor are
not square and the number of pixels per unit distance varies between the xc and yc
directions; we will call these scalingsmx andmy . Note that pixel positions have their
origin at the corner of the sensor and so the position of the principal point (where the
principal axis intersects the image plane) is modeledwith pixel coordinates [x0, y0]T .
Finally, many camera models also cater for any skew,5 s, so that the mapping into
pixels is given by ⎡

⎣
x
y
1

⎤
⎦ =

⎡
⎣
mx s x0
0 my y0
0 0 1

⎤
⎦

⎡
⎣
xc
yc
1

⎤
⎦ .

We denotePc as the 3 × 3 projective matrix defined by the five parametersmx ,my, s
and x0, y0 in the above equation.

2.3.2.4 Camera Modeling: Concatenating the Projective Mappings

We can concatenate the three stages described in the three previous subsections to
give

λx = PcPpPrX

or simply
λx = PX, (2.3)

where λ is non-zero and positive. We note the following points concerning the above
equation:

1. For any homogeneous image point scaled to λ[x, y, 1]T , the scale λ is equal to
the imaged point’s depth in the camera-centered frame (λ = Zc).

2. Any non-zero scaling of the projection matrix λPP performs the same projection
since, in Eq.2.3, any non-zero scaling of homogeneous image coordinates is
equivalent.

3. A camera with projection matrix P, or some non-zero scalar multiple of that, is
informally referred to as camera P in the computer vision literature and, because
of point 2 above, it is referred to as being defined up to scale.

The matrix P is a 3 × 4 projective camera matrix with the following structure:

P = K[R|t]. (2.4)

The parameters within K are the camera’s intrinsic parameters. These parameters
are those combined from Sects. 2.3.2.2 and 2.3.2.3 above, so that

5Skew models a lack of orthogonality between the two image sensor sampling directions. For most
imaging situations, it is zero.
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K =
⎡
⎣

αx s x0
0 αy y0
0 0 1

⎤
⎦ ,

where αx = f mx and αy = f my represent the focal length in pixels in the x and y
directions, respectively. Together, the rotation and translation in Eq.2.4 are termed
the camera’s extrinsic parameters. Since there are 5 DOF from intrinsic parameters
and 6 DOF from extrinsic parameters, a camera projection matrix has only 11 DOF,
not the full 12 of a general 3 × 4 matrix. This is also evident from the fact that we are
dealing with homogeneous coordinates and so the overall scale of P does not matter.

By expanding Eq.2.3, we have

λ

homogeneous
image

coordinates︷ ︸︸ ︷⎡
⎣
x
y
1

⎤
⎦ =

intrinsic
camera

parameters︷ ︸︸ ︷⎡
⎣

αx s x0
0 αy y0
0 0 1

⎤
⎦

extrinsic
camera

parameters︷ ︸︸ ︷⎡
⎣
r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

⎤
⎦

homogeneous
world

coordinates︷ ︸︸ ︷⎡
⎢⎢⎣
X
Y
Z
1

⎤
⎥⎥⎦ , (2.5)

which indicates that both the intrinsic and extrinsic camera parameters are necessary
to fully define a ray (metrically, not just in pixel units) in 3D space and hence make
absolute measurements in multiple-view 3D reconstruction. Finally, we note that any
non-zero scaling of scene homogeneous coordinates [X,Y, Z , 1]T in Eq.2.5 gives the
same image coordinates6 which, for a single image, can be interpreted as ambiguity
between the scene scale and the translation vector t.

2.3.3 Radial Distortion

Typical cameras have a lens distortion which disrupts the assumed linear projective
model. Thus a camera may not be accurately represented by the pinhole camera
model that we have described, particularly if a low-cost lens or a wide field-of-
view (short focal length) lens such as a fish-eye lens is employed. Some examples
of lens distortion effects are shown in Fig. 2.6. Note that the effect is non-linear
and, if significant, it must be corrected so that the camera can again be modeled
as a linear device. The estimation of the required distortion parameters to do this
is often encompassed within a camera calibration procedure, which is described in
Sect. 2.4. With reference to our previous three-stage development of a projective
camera in Sect. 2.3.2, lens distortion occurs at the second stage which is the 3D to
2D projection, and this distortion is sampled by the image sensor.

6The same homogeneous image coordinates up to scale or the same inhomogeneous image coordi-
nates.
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Fig. 2.6 Examples of radial distortion effects in lenses: (a) No distortion, (b) Pincushion distortion,
(c) Barrel distortion, (d) Fish-eye distortion

Detailed distortion models contain a large number of parameters that model both
radial and tangential distortions [13]. However, radial distortion is the dominant
factor and usually it is considered sufficiently accurate to model this distortion only,
using a low-order polynomial such as

[
xnd
ynd

]
=

[
xn
yn

]
+

[
xn
yn

]
(k1r

2 + k2r
4),

where [xn, yn]T is the undistorted image position (i.e., that obeys our linear projection
model) in normalized coordinates, [xnd , ynd ]T is the distorted image position in
normalized coordinates, k1 and k2 are the unknown radial distortion parameters, and
r = √

x2n + y2n . Assuming zero skew, we also have
[
xd
yd

]
=

[
x
y

]
+

[
(x − x0)
(y − y0)

]
(k1r

2 + k2r
4), (2.6)

where the distorted position [xd , yd ]T is now expressed in pixel coordinates and
[x, y]T are the usual pixel coordinates predicted by the linear pinhole model. Note
that r is still defined in normalized image coordinates and so a non-unity aspect
ratio (mx �= my) in the image sensor does not invalidate this equation. Also note that
both Eq.2.6 and Fig. 2.6 indicate that distortion increases away from the center of
the image. In the barrel distortion, shown in Fig. 2.6c, distortion correction requires
that image points are moved slightly toward the center of the image, more so if they
are near the edges of the image. Correction could be applied to the whole image,
as in dense stereo, or just a set of relevant features, such as extracted corner points.
Clearly, the latter process is computationally cheaper.

Now that we have discussed the modeling of a camera’s image formation process
in detail; we now need to understand how to estimate the parameters within this
model. This is the focus of the next section, which details camera calibration.
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2.4 Camera Calibration

Camera calibration [14] is the process of finding the parameters of the camera that
produced a given image of a scene. This includes both extrinsic parameters R, t
and intrinsic parameters, comprising those within the matrix K and radial distortion
parameters, k1, k2. Once the intrinsic and extrinsic camera parameters are known, we
know the camera projection matrix P and, taking into account any radial distortion
present, we can back-project any image pixel to a 3D ray in space. Clearly, as the
intrinsic camera calibration parameters are tied to the focal length, changing the zoom
on the lens would make the calibration invalid. It is also worth noting that calibration
is not always required. For example, we may be more interested in approximate
shape, where we need to know what objects in a scene are co-planar, rather than their
absolute 3D position measurements. However, for stereo systems at least, camera
calibration is commonplace.

Generally, it is not possible for an end user to get the required calibration informa-
tion to the required accuracy from camera manufacturer’s specifications and external
measurement of the position of cameras in some frames. Hence, some sort of cam-
era calibration procedure is required, of which there are several different categories.
The longest established of these is photogrammetric calibration, where calibration is
performed using a scene object of precisely known physical dimensions. Typically,
several images of a special 3D target, such as three orthogonal planes with calibra-
tion grids (chessboard patterns of black and white squares), are captured and precise
known translationsmay be used [89]. Although this gives accurate calibration results,
it lacks flexibility due to the need for precise scene knowledge.

At the other end of the spectrum is self-calibration (auto-calibration) [38, 55],
where no calibration target is used. The correspondences across three images of the
same rigid scene provide enough constraints to recover a set of camera parameters
which allow 3D reconstruction up to a similarity transform. Although this approach
is flexible, there are many parameters to estimate and reliable calibrations cannot
always be obtained.

Between these two extremes are “desktop” camera calibration approaches that use
images of planar calibration grids, captured at several unknown positions and orien-
tations (i.e., a single planar chessboard pattern is manually held at several random
poses, and calibration images are captured and stored). This gives a good compro-
mise between the accuracy of photogrammetric calibration and the ease of use of
self-calibration. A seminal example is given by Zhang [98].

Although there are a number of publicly available camera calibration packages
on the web, such as the Caltech camera calibration toolbox for MATLAB [11] and in
the OpenCV computer vision library [62], a detailed study of at least one approach
is essential to understand calibration in detail. We will use Zhang’s work [98] as a
seminal example, and this approach consists of two main parts:

1. Abasic calibration that is basedon linear least squares andhencehas a closed-form
solution. In the formulation of the linear problem, a set of nine parameters need to
be estimated. These are rather complicated combinations of the camera’s intrinsic
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parameters, and the algebraic least squares minimization to determine them has
no obvious geometric meaning. Once intrinsic parameters have been extracted
from these estimated parameters, extrinsic parameters can be determined using
the homography associated with each calibration grid image.

2. A refined calibration is based on non-linear least squares and hence has an iterative
solution.Here, it is possible to formulate a least squares error between the observed
(inhomogeneous) image positions of the calibration grid corners and the positions
predicted by the current estimate of intrinsic and extrinsic camera parameters. This
has a clear geometric interpretation, but the sumof squares function thatwewish to
minimize is non-linear in terms of the camera parameters. A standard approach to
solving this kind of problem is the Levenberg–Marquardt (LM) algorithm, which
employs gradient descent when it is far from a minimum and Gauss–Newton
minimization when it gets close to a minimum. Since the LM algorithm is a very
general procedure, it is straightforward to employ more complex camera models,
such as those that include parameters for the radial distortion associated with the
camera lens.

The iterative optimization in (2) above needs to bewithin the basin of convergence
of the global minimum and so the linear method in (1) is used to determine an
initial estimation of camera parameters. The raw data used as inputs to the process
consists of the image corner positions, as detected by an automatic corner detector
[37] [81], of all corners in all calibration images and the corresponding 2D world
positions, [X, Y ]T , of the corners on the calibration grid. Typically, correspondences
are established bymanually clicking one ormore detected image corners, andmaking
a quick visual check that the imaged corners are matched correctly using overlaying
graphics or text. A typical set of targets is shown in Fig. 2.7.

In the following four subsections, we outline the theory and practice of camera
calibration. The first subsection details the estimation of the planar projective map-

Fig. 2.7 Left: calibration targets used in a camera calibration process. Right: after calibration, it is
possible to determine the positions of the calibration planes using the estimated extrinsic parameters
(Figure courtesy of theCamera Calibration Toolbox forMATLABwebpage at Caltech by Jean-Yves
Bouguet [11])
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ping between a scene plane (calibration grid) and its image. The next two subsections
closely follow Zhang [98] and detail the basic calibration and then the refined cal-
ibration, as outlined above. These subsections refer to the case of a single camera,
and so a final fourth subsection is used to describe the additional issues associated
with the calibration of a stereo rig.

2.4.1 Estimation of a Scene-to-Image Planar Homography

A homography is a projective transformation (projectivity) that maps points to points
and lines to lines. It is a highly useful imaging model when we view planar scenes,
which is common in many computer vision processes, including the process of cam-
era calibration.

Suppose that we view a planar scene, then we can define the (X,Y ) axes of
the world coordinate system to be within the plane of the scene, and hence Z = 0
everywhere. Equation2.5 indicates that, as far as a planar scene is concerned, the
imaging process can be reduced to

λx = K[r1 r2 t][X,Y, 1]T ,

where r1 and r2 are the first and second columns of the rotation matrix R; hence,

λx = H[X,Y, 1]T , H = K[r1 r2 t]. (2.7)

The 3 × 3 matrix H is termed a planar homography, which is defined up to a scale
factor,7 and hence has eight degrees of freedom instead of nine.

By expanding the above equation, we have

λ

⎡
⎣
x
y
1

⎤
⎦ =

⎡
⎣
h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤
⎦

⎡
⎣
X
Y
1

⎤
⎦ . (2.8)

If we map homogeneous coordinates to inhomogeneous coordinates, by dividing
through by λ, this gives

x = h11X + h12Y + h13
h31X + h32Y + h33

(2.9)

y = h21X + h22Y + h23
h31X + h32Y + h33

. (2.10)

7Due to the scale equivalence of homogeneous coordinates.
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From a set of four correspondences in a general position,8 we can formulate a
set of eight linear equations in the eight unknowns of a homography matrix. This
is because each correspondence provides a pair of constraints of the form given in
Eqs. 2.9 and 2.10.

Rearranging terms in four pairs of those equations allows us to formulate the
homography estimation problem in the form:

Ah = 0, (2.11)

where A is an 8 × 9 data matrix derived from image and world coordinates of cor-
responding points and h is the 9-vector containing the elements of the homography
matrix. Since A has rank 8, it has a one-dimensional null space, which provides
a non-trivial (non-zero vector) solution for Eq. 2.11. This can be determined from
a Singular Value Decomposition (SVD) of the data matrix, which generates three
matrices (U,D,V) such that A = UDVT . Here, D is a diagonal matrix of singular
values andU, V are orthonormal matrices. Typically, SVD algorithms order the sin-
gular values in descending order down the diagonal ofD and so the required solution,
corresponding to a singular value of zero, is extracted as the last column of V. Due to
the homogeneous form of Eq.2.11, the solution is determined up to a non-zero scale
factor, which is acceptable because H is only defined up to scale. Often a unit scale
is chosen (i.e., ||h|| = 1), and this scaling is returned automatically in the columns
of V.

In general, a larger number of correspondences than the minimumwill not exactly
satisfy the same homography because of image noise. In this case, a least squares
solution to h can be determined in an over-determined system of linear equations.
We follow the same procedure as above but this time the data matrix is of size 2n × 9
where n > 4 is the number of correspondences. When we apply SVD, we still select
the last column of V corresponding to the smallest singular value in D. (Note that,
in this case, the smallest singular value will be non-zero.)

Data normalization prior to the application of SVD is essential to give stable esti-
mates [38]. The basic idea is to translate and scale both image and world coordinates
to avoid orders of magnitude difference between the columns of the data matrix.
Image points are translated so that their centroid is at the origin and scaled to give
a root-mean-squared (RMS) distance of

√
2 from that origin, so that the “average”

image point has coordinates of unity magnitude. Scene points should be normalized
in a similar way except that they should be scaled to give an RMS distance of

√
3.

When using homogeneous coordinates, the normalizations can be applied using
matrix operators Ni , Ns , such that new normalized coordinates are given as

xn = Nix, Xn = NsX

8No three points collinear.
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for the image points and scene points, respectively. Suppose that the homography
computed from normalized coordinates is H̃, then the homography relating the orig-
inal coordinates of the correspondences is given as

H = N−1
i H̃Ns .

2.4.2 Basic Calibration

From the known planar scene target and the resulting image, a scene-to-image planar
homography can be estimated as described in the previous subsection. Suppose that
we describe such a homography as a set of 3 × 1 column vectors, i.e.,H = [h1 h2 h3],
then comparing this to Eq.2.7 we have

λHh1 = Kr1, λHh2 = Kr2, (2.12)

where λH is a scale factor, accounting for the particular scale of an estimated homog-
raphy. Noting that the columns of the rotation matrix, r1, r2 are orthonormal,

rT1 r2 = hT
1 K

−TK−1h2 = 0, (2.13)

rT1 r1 = rT2 r2 ⇒ hT
1 K

−TK−1h1 = hT
2 K

−TK−1h2. (2.14)

These equations provide one constraint each on the intrinsic parameters.
We construct a symmetric matrix B such that

B = K−TK−1 =
⎡
⎣
B11 B12 B13

B12 B22 B23

B13 B23 B33

⎤
⎦ .

Let the i th column vector of H be hi = [h1i , h2i , h3i ]T , we have

hT
i Bh j = vTi jb,

where

vi j = [h1i h1 j , h1i h2 j + h2i h1 j , h2i h2 j , h3i h1 j + h1i h3 j , h3i h2 j + h2i h3 j , h3i h3 j ]T

and b is the vector containing six independent entries of the symmetric matrix B:

b = [B11, B12, B22, B13, B23, B33]T .

Therefore, the two constraints in Eqs. 2.13 and 2.14 can be rewritten as
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[
vT12

(v11 − v22)T

]
b = 0.

If n images of the planar calibration grid are observed, n sets of these equations
can be stacked into a matrix–vector equation as

Vb = 0,

where V is a 2n × 6 matrix. Although a minimum of three planar views allows us
to solve for b, it is recommended to take more and form a least squares solution. In
this case, the solution for b is the eigenvector of VTV associated with the smallest
eigenvalue. Once b is estimated, we know the matrix B up to some unknown scale
factor, λB , and all of the intrinsic camera parameters can be computed by expanding
the right-hand side of B = λBK−TK−1 in terms of its individual elements. Although
this is somewhat laborious, it is straightforward algebra of simultaneous equations,
where five intrinsic camera parameters plus one unknown scale factor can be derived
from the six parameters of the symmetric matrixB. Zhang [98] presents the solution:

y0 = (B12B13 − B11B23)

(B11B22 − B2
12)

λB = B33 − [B2
13 + y0(B12B13 − B11B23)]

B11

αx =
√

λB

B11

αy =
√

λB B11

(B11B22 − B2
12)

s = −B12α
2
xαy

λB

x0 = sy0
αy

− B13α
2
x

λB
.

OnceK is known, the extrinsic camera parameters for each image can be computed
using Eq.2.12:

r1 = λHK−1h1
r2 = λHK−1h2
r3 = r1 × r2
t = λHK−1h3,

where here



60 S. Se and N. Pears

λH = 1

||K−1h1|| = 1

||K−1h2|| .

The vectors r1, r2 will not be exactly orthogonal and so the estimated rotation matrix
does not exactly represent a rotation. Zhang [98] suggests performing SVD on the
estimated rotation matrix so that USVT = R. Then the closest pure rotation matrix
in terms of Frobenius norm to that estimated is given as R′ = UVT .

2.4.3 Refined Calibration

After computation of the linear solution described above, it can be iteratively refined
via a non-linear least squares minimization using the Levenberg–Marquardt (LM)
algorithm. As previously mentioned, the camera parameters can be extended at this
stage to include an estimation for the lens distortion parameters, to give us the fol-
lowing minimization:

p̂ = min
p

⎧⎨
⎩

n∑
i=1

m∑
j=1

||xi, j − x̂i, j (K, k1, k2,Ri , ti ,X j )||2
⎫⎬
⎭ ,

where xi, j is the image ofworld pointX j in image i and x̂i, j is the predicted projection
of the same world point according to Eq.2.7 (using estimated intrinsic and extrinsic
camera parameters) followed by radial distortion according to Eq.2.6.

The vector p contains all of the free parameters within the planar projection
(homography) function plus two radial distortion parameters k1 and k2 as described
in Sect. 2.3.3. Initial estimates of these radial distortion parameters can be set to zero.
LM iteratively updates all parameters according to the equation:

pk+1 = pk + δpk
δpk = −(JT J + λJ diag(JT J))−1JT e,

where J is the Jacobian matrix containing the first derivatives of the residual e with
respect to each of the camera parameters.

Thus computation of the Jacobian is central to LMminimization. This can be done
either numerically or with a custom routine, if analytical expressions for the Jacobian
entries are known. In the numerical approach, each parameter is incremented and the
function to be minimized (the least squares error function in this case) is computed
anddivided by the increment,which should be themaximumof 10−6 and 10−4 × |pi |,
where pi is some current parameter value [38]. In the case of providing a custom
Jacobian function, the expressions are long and complicated in the case of camera
calibration, and so the use of a symbolicmathematics package can help reduce human
error in constructing the partial differentials.



2 Passive 3D Imaging 61

Note that there are LM implementations available on many platforms, for exam-
ple, in MATLAB’s optimization toolbox, or the C/C++ levmar package. A detailed
discussion of iterative estimation methods including LM is given in Appendix 6 of
Hartley and Zisserman’s book [38].

2.4.4 Calibration of a Stereo Rig

As a mathematical convenience, it is common practice to choose the optical center
of one camera to be the origin of a stereo camera’s 3D coordinate system. Then,
the relative rigid location of the other camera, [R, t], within this frame, along with
both sets of intrinsic parameters, is required to generate a pair of projection matrices
and hence a pair of 3D rays from corresponding image points that intersect at their
common scene point.

The previous two subsections showed how we can calculate the intrinsic param-
eters for any single camera. If we have a stereo pair, which is our primary interest,
then we would compute a pair of intrinsic parameter matrices, one for the left camera
and one for the right. In most cases, the two cameras are the same model, and hence
we would expect the two intrinsic parameter matrices to be very similar.

Also, we note that, for each chessboard position, two sets of extrinsic parameters,
[R, t], are generated, one for the left camera’s position relative to the calibration
plane and one for the right. Clearly, each left–right pair of extrinsic parameters should
have approximately9 the same relationship, which is due to the fixed rigid rotation
and translation of one camera relative to another in the stereo rig.

Once two sets of intrinsic parameters and one set of extrinsic parameters encoding
the relative rigid pose of one camera relative to another has been computed, the
results are often refined in a global stereo optimization procedure, again using the
Levenberg–Marquardt approach. To reduce n sets of relative extrinsic parameters
to one set, we could choose the set associated with the closest calibration plane or
compute some form of average.

All parameter estimates, both intrinsic and extrinsic, can be improved if the opti-
mization is now performed over a minimal set of parameters, since the extrinsic
parameters are reduced from 12 (two rotations and two translations) to 6 (one rela-
tive rotation and one relative translation) per calibration grid location. This approach
ensures global rigidity of the stereo rig going from left-to-right camera. An imple-
mentation of global stereo optimization to refine stereo camera parameters is given
in the Caltech camera calibration toolbox for MATLAB [11].

9“Approximately”, because of noise in the imaged corner positions supplied to the calibration
process.
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2.5 Two-View Geometry

3D reconstruction from an image pair must solve two problems: the correspondence
problem and the reconstruction problem.

• Correspondence problem. For a point x in the left image, which is the correspond-
ing point x′ in the right image, where x and x′ are images of the same physical
scene point X?

• Reconstruction problem. Given two corresponding points x and x′, how do we
compute the 3D coordinates of scene point X?

Of these problems, the correspondence problem is significantly more difficult as it
is a search problemwhereas, for a stereo camera of known calibration, reconstruction
to recover the 3D measurements is a simple geometric mechanism. Since we have
sets of three unique points, (x, x′,X), this mechanism is called triangulation (not to
be confused with surface mesh triangulation, described in Chap.6).

This section is designed to give the reader a good general grounding in two-view
geometry and estimation of the key two-view geometric relations that can be useful
even when extrinsic or intrinsic camera calibration information is not available.10

As long as the concept of epipolar geometry is well understood, the remaining main
sections of this chapter can be easily followed.

2.5.1 Epipolar Geometry

Epipolar geometry establishes the relationship between two camera views. When
we have calibrated cameras and we are dealing with metric image coordinates, it is
dependent only on the relative pose between the cameras.Whenwe have uncalibrated
cameras and we are dealing with pixel-based image coordinates, it is additionally
dependent on the cameras’ intrinsic parameters; however, it is independent of the
scene.

Once the epipolar geometry is known, for any image point in one image, we know
that its corresponding point (its match) in the other image must lie on a line, which is
known as the epipolar line associated with the original point. This epipolar constraint
greatly reduces the correspondence problem from a 2D search over the whole image
to a 1D search along the epipolar line only, and hence reduces computational cost
and ambiguities.

The discussion here is limited to two-view geometry only. A similar constraint
called the trifocal tensor is applicable for three views but is outside the scope of this
chapter. For further information on the trifocal tensor and n-view geometries, please
refer to [38].

10Extrinsic parameters are always not known in a structure from motion problem; they are part of
what we are trying to solve for. Intrinsic parameters may or may not be known, depending on the
application.

http://dx.doi.org/10.1007/978-3-030-44070-1_6
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Fig. 2.8 a The epipolar geometry establishes the relationship between the two camera views. b
The epipolar planes rotate around the baseline, and all epipolar lines intersect at the epipole

As shown in Fig. 2.8a, the image points x and x′, world point X, and the camera
centers are co-planar, and this plane is called the epipolar plane, which is shaded in
the figure. If we only know x, how is the corresponding point x′ constrained? The line
l′ is the intersection of the epipolar plane with the second image plane. l′ is called the
epipolar line, which is the image in the second view of the ray back-projected from
x. As the point x′ lies on l′, the correspondences search does not need to cover the
entire image but can be restricted only to the line l′. In fact, if any point on epipolar
line l has a corresponding point in the second image, it must lie on epipolar line l′
and vice versa. Thus l and l′ are called conjugate epipolar lines.

The epipole is the point of intersection of the line joining the camera centers with
the image plane. The epipole e is the projection of the second camera center on the
first image, while the epipole e′ is the projection of the first camera center on the
second image.

In essence, two-view epipolar geometry describes the intersection of the image
planes with the pencil of planes having the baseline as the pencil axis, as illustrated
in Fig. 2.8b. Note that the baseline is the line joining the two camera centers.11 All
epipolar lines intersect at the epipole of the respective image to give a pencil of
epipolar lines in each image. Note that the epipoles are not necessarily within the
boundaries of the image. A special case is when the cameras are oriented in the same
direction, and they are separated by a translation parallel to both image planes. In
this case, the epipoles are at infinity and the epipolar lines are parallel. Furthermore,
if the translation is in the X direction only and the cameras have the same intrinsic
parameters, the conjugate epipolar lines lie on the same image rows. This is an ideal
set up when we search for correspondences between the two images. However, we
may prefer some camera vergence to improve the field-of-view overlap between the
two cameras for certain distance and, in this case, the images need to be warped so
that the epipolar lines become horizontal again. This rectification process is discussed
later in the chapter.

11The length of the baseline is the magnitude of the extrinsic translation vector, t.
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Fig. 2.9 The essential
matrix E = [t]xR encodes
the epipolar geometry. It is
used to relate the
correspondences xc and xc ′
between two images, when
these image locations are
expressed in metric units. If
pixel-based coordinates are
used (for example, if
intrinsic camera parameters
are unknown) epipolar
geometry is encoded by the
fundamental matrix F

The epipolar constraint can be represented algebraically by a 3 × 3 matrix called
the fundamental matrix (F), when we are dealing with raw pixel coordinates, and by
the essential matrix (E) when the intrinsic parameters of the cameras are known and
we are dealing with metrically expressed coordinates (e.g., millimeters) in the image
plane.

2.5.2 Essential and Fundamental Matrices

Both the essential and fundamental matrices derive from a simple co-planarity con-
straint. For simplicity it is best to look at the epipolar relation using the essential
matrix first and then adapt it using the camera intrinsic parameters to obtain a rela-
tion for pixel-based image coordinates, which involves the fundamental matrix.

Referring to Fig. 2.9, we have a world point X that projects to points xc and x′
c in

the image planes. These image plane points are expressed as 3-vectors, so that they
are effectively the 3D positions of the imaged points expressed metrically in their
own camera frame, hence the subscript c. (Note also that they can be regarded as
normalized homogeneous image coordinates, with the scale set to the focal length, f ,
although any non-zero scale would suffice.)We know that the three vectorsCxc,C′x′

c
and t are co-planar, so we can choose one of the two camera frames to express this
co-planarity, using the scalar triple product. If we choose the right frame (primed),
then we must rotate vector Cxc using rotation matrix R, to give

x′T
c (t × Rxc) = 0.

Expressing the cross-product with t by the multiplication with the skew-symmetric
matrix [t]x , we have

x′
c[t]xRxc = 0,
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where

[t]x =
⎡
⎣

0 −tz ty
tz 0 −tx

−ty tx 0

⎤
⎦

and thus we have
E = [t]xR (2.15)

and
x′T
c Exc = 0. (2.16)

Thus the essentialmatrix encapsulates only extrinsic parameters, namely, the rotation
and translation associated with the relative pose of the two cameras. The implication
of this is that, in applications where R and t have not been computed in a calibration
procedure, they may be recoverable from E, which will be discussed further in
Sect. 2.8.2 in the context of structure from motion.

In many practical situations, we also need to deal with uncalibrated cameras
where the intrinsic parameters are unknown (i.e., the mapping between metric image
coordinates and raw pixel values is unknown). The shifting and scaling operations
required for this conversion can be encapsulated in matrices K and K′, as follows:

x = Kxc, x′ = K′x′
c,

where K and K′ are the 3 × 3 matrices containing the intrinsic camera parameters
for the two cameras. Inserting these relations into Eq.2.16 gives

x′TK′−TEK−1x = 0

x′TFx = 0

thus
F = K′−TEK−1 = K′−T [t]xRK−1

and we can see that the fundamental matrix encapsulates both intrinsic and extrinsic
parameters. The interpretation of the epipolar constraint given by the fundamental
matrix is that, if points x and x′ correspond, then x′ must lie on the epipolar line
given by l′ = Fx and therefore the dot product between x′ and Fx is zero.

Some key properties of the fundamental matrix are summarized below:

• If F is the fundamental matrix between camera P and camera P′, then FT is the
fundamental matrix between camera P′ and camera P.

• F is a projective mapping taking a point to a line. If l and l′ are corresponding (i.e.,
conjugate) epipolar lines, then any point x on l maps to the same line l′. Hence,
there is no inverse mapping (zero determinant, rank 2).
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• F has seven degrees of freedom. While a 3 × 3 homogeneous matrix has eight
independent ratios, there is also an additional constraint that the determinant of F
is zero (F is rank 2), which further removes one degree of freedom.

• For any point x in the first image, the corresponding epipolar line in the second
image is l′ = Fx. Similarly, l = FT x′ represents the epipolar line in the first image
corresponding to x′ in the second image.

• The epipoles are determined as the left and right nullspaces of the fundamental
matrix. This is evident, since each epipole is on every epipolar line in their respec-
tive image. This is written as e′T l′ = e′TFx = 0 ∀x, hence e′TF = 0. Similarly
lT e = x′TFe = 0 ∀x′, hence Fe = 0.

• The SVD (Singular Value Decomposition) of F is given as

F = U diag(σ1, σ2, 0) VT ,

where U = [u1,u2, e′], V = [v1, v2, e]. Thus finding the column in V that cor-
responds to the zero singular value gives a simple method of computation of the
epipoles from the fundamental matrix.

• For cameras with some vergence (epipoles not at infinity) to give camera projec-
tion matrices: P = K[I|0] and P′ = K′[R|t], then we have F = K

′−T [t]×RK−1 =
[K′t]×K′RK−1 = K

′−TRKT [KRT t]× [38].

2.5.3 The Fundamental Matrix for Pure Translation

If the two identical cameras (K = K′) are separated by a pure translation (R = I), the
fundamental matrix has a simple form, which can be shown to be [38]

F = [Kt]x = [e′]x =
⎡
⎣

0 −e′
z e′

y

e′
z 0 −e′

x
−e′

y e′
x 0

⎤
⎦ .

In this case, the epipoles are at the same location in both images. If the translation
is parallel to the image plane, the epipoles are at infinity with ez = e′

z = 0 and the
epipolar lines are parallel in both images. When discussing rectilinear stereo rigs and
rectification later, we will be particularly interested in the case when the translation
is parallel to the camera’s x-axis, in which case the epipolar lines are parallel and
horizontal and thus correspond to image scan (raster) lines. In this case e′ = [1, 0, 0]T
and the fundamental matrix is

F =
⎡
⎣
0 0 0
0 0 −1
0 1 0

⎤
⎦
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and hence the relationship between corresponding points x and x′ is given by x′TFx =
0 which reduces to y = y′.

2.5.4 Computation of the Fundamental Matrix

As the fundamentalmatrix is expressed in terms of corresponding image points,F can
be computed from image correspondences alone. No camera calibration information
is needed, and pixel coordinates are used directly. Note that there are degenerate cases
in the estimation of F. These occur in two common and well-known instances: (i)
when the relative pose between the two views can be described by a pure rotation and
(ii) when the scene is planar. For nowwe consider scenarios where such degeneracies
do not occur and we return to them later.

By expanding x′TFx = 0 where x = [x, y, 1]T and x′ = [x ′, y′, 1]T and

F =
⎡
⎣

f11 f12 f13
f21 f22 f23
f31 f32 f33

⎤
⎦

we obtain

x ′x f11 + x ′y f12 + x ′ f13 + y′x f21 + y′y f22 + y′ f23 + x f31 + y f32 + f33 = 0.

As each feature correspondence provides one equation, for n correspondences, we
get the following set of linear equations:

⎡
⎢⎣
x ′
1x1, x ′

1y1, x ′
1, y′

1x1, y′
1y1, y′

1, x1, y1, 1
...

...
...

...
...

...
...

...
...

x ′
nxn, x ′

n yn, x ′
n, y′

nxn, y′
n yn, y′

n, xn, yn, 1

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f11
f12
f13
f21
f22
f23
f31
f32
f33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (2.17)

or more compactly,

Af = 0,

where A is termed the data matrix and f is the vector of unknown elements of F.
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The eight-point algorithm12 [47] can be used as a very simple method to solve for
F linearly using eight correspondences. As this is a homogeneous set of equations,
f can only be determined up to a scale factor. With eight correspondences, Eq.2.17
can be solved by linear methods, where the solution is the nullspace of A. (This can
be found from the column in V that corresponds to the zero singular value inD in the
singular value decomposition A = UDVT .) However, a solution with a minimal set
of correspondences is often inaccurate, particularly if the correspondences are not
well spread over the images, or they may not provide enough strong constraints if
some of them are near-collinear or co-planar. It is preferable to use more than eight
correspondences, then the least squares solution for f is given by the singular vector
corresponding to the smallest singular value of A.

Note that this approach is similar to that for determining the homography matrix,
discussed earlier in Sect. 2.4.1. As with that approach, it is essential to normalize
the pixel coordinates of each image before applying SVD [38, 39], using a mean-
centering translation and a scaling so that the RMS distance of the points to the origin
is

√
2.Whenusing homogeneous coordinates, this normalization canbe applied using

matrix operators N, N′, such that new normalized image coordinates are given as
xn = Nx, x′

n = N′x′.
In general, the solution for Fn (the subscript n now denotes that we have based

the estimate on normalized image coordinates) will not have zero determinant (its
rank will be 3 and not 2), which means that the epipolar lines will not intersect at
a single point. In order to enforce this, we can apply SVD a second time, this time
to the initially estimated fundamental matrix so that Fn = UDVT . We then set the
smallest singular value (in the third row and third column of D) to zero to produce
matrix D′ and update the estimate of the fundamental matrix as Fn = UD′VT .

Of course, the estimate of Fn maps points to epipolar lines in the normalized
image space. If we wish to search for correspondences within the original image
space, we need to de-normalize the fundamental matrix estimate as F = N′TFnN.

Typically, there are many correspondences between a pair of images, including
mostly inliers but also some outliers. This is inevitable, since matching is a local
search and ambiguous matches exist, which will be discussed further in Sect. 2.7.
Various robust methods for estimating the fundamental matrix, which address the
highly corrupting effect of outliers, are compared in [86]. In order to compute F
from these correspondences automatically, a common method is to use a robust
statistics technique called Random Sample Consensus (RANSAC) [32], which we
now outline:

1. Extract features in both images, for example, from a corner detector [37].
2. Perform feature matching between images (usually over a local area neighbor-

hood) to obtain a set of potential matches or putative correspondences.
3. Repeat the following steps N times:

• Select eight putative correspondences randomly.
• Compute F using these eight points, as described above.

12There are several other approaches, such as the seven-point algorithm.
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Table 2.1 Number of samples required to get at least one good sample with 99% probability for
various sample sizes s and outlier fraction ε.

Sample size s ε = 10% ε = 20% ε = 30% ε = 40% ε = 50%

4 5 9 17 34 72

5 6 12 26 57 146

6 7 16 37 97 293

7 8 20 54 163 588

8 9 26 78 272 1177

• Find the number of inliers13 that support F.

4. Find the Fwith the highest number of inliers (largest support) among the N trials.
5. Use this F to look for additional matches outside the search range used for the

original set of putative correspondences.
6. Re-compute a least squares estimate of F using all inliers.

Note that re-computingF in the final stepmay change the set of inliers, as the epipolar
lines are adjusted. Thus, a possible refinement is to iterate computation of a linear
least squares estimate of F and its inliers, until a stable set of inliers is achieved or
some maximum number of iterations is reached. The refinement achieved is often
considered to be not worth the additional computational expense if processing time
is considered important or if the estimate of F is to be used as the starting point for
more advanced iterative non-linear refinement techniques, described later.

In the RANSAC approach, N is the number of trials (putative F computations)
needed to get at least one good sample with a high probability (e.g., 99%). How large
should N be? The probability p of getting a good sample is given by

p = 1 − (1 − (1 − ε)s)N ,

where ε is the fraction of outliers (incorrect feature correspondences) and s is the
number of correspondences selected for each trial. The above equation can be re-
arranged as

N = log(1 − p)

log(1 − (1 − ε)s)
. (2.18)

The number of samples required for various sample sizes and outlier fractions based
on Eq.2.18 are shown in Table2.1. It can be seen that the number of samples gets
higher as the outlier fraction increases.

By repeatedly selecting a group of correspondences, the inlier support would be
high for a correct hypothesis in which all the correspondences within the sample

13An inlier is a putative correspondence that lies within some threshold of its expected position
predicted by F. In other words, image points must lie within a threshold from their epipolar lines
generated by F.
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size, s, are correct. This allows the robust removal of outliers and the computation
of F using inliers only. As the fraction of outliers may not be known in advance, an
adaptive RANSACmethod can be usedwhere the number of outliers at each iteration
is used to re-compute the total number of iterations required.

As the fundamental matrix has only seven degrees of freedom, a minimum of
seven correspondences are required to compute F. When there are only seven cor-
respondences, det (F) = 0 constraint also needs to be imposed, resulting in a cubic
equation to solve, and hence may produce up to three solutions and all three must be
tested for support. The advantage of using seven correspondences is that fewer trials
are required to achieve the same probability of getting a good sample, as illustrated
in Table2.1.

Fundamental matrix refinement techniques are often based on the Levenberg–
Marquardt algorithm, such that some non-linear cost function is minimized. For
example, a geometric cost function can be formulated as the sum of the squared
distances between image points and the epipolar lines generated from their associated
corresponding points and the estimate of F. This is averaged over both points in a
correspondence and over all corresponding points (i.e., all those that agree with the
estimate of F). The minimization can be expressed as

F = min
F

(
1

N
ΣN

i=1

(
d(x′

i , Fxi )2 + d(xi , FT x′
i )
2)

)
,

where d(x, l) is the distance of a point x to a line l, expressed in pixels. For more
details of this and other non-linear refinement schemes, the reader is referred to [38].

2.5.5 Two Views Separated by a Pure Rotation

If two views are separated by a pure rotation around the camera center, the baseline
is zero, the epipolar plane is not defined, and a useful fundamental matrix cannot
be computed. In this case, the back-projected rays from each camera cannot form a
triangulation to compute depth. This lack of depth information is intuitive because,
under rotation, all points in the same direction move across the image in the same
way, regardless of their depth. Furthermore, if the translation magnitude is small, the
epipolar geometry is close to this degeneracy and computation of the fundamental
matrix will be highly unstable.

In order to model the geometry of correspondences between two rotated views,
a homography, described by a 3 × 3 matrix H, should be estimated instead. As
described earlier, a homography is a projective transformation (projectivity) that
maps points to points and lines to lines. For two identical cameras (K = K′), the
scene-to-image projections are

x = K[I|0]X, x′ = K[R|0]X



2 Passive 3D Imaging 71

Fig. 2.10 The homography
induced by a plane π , where
a point x in the first image
can be transferred to the
point x′ in the second image

hence
x′ = KRK−1x = Hx. (2.19)

We can think of this homography as amapping of image coordinates onto normalized
coordinates (centered on the principal point at a unitmetric distance from the camera).
These points are rotated and then multiplying by K generates the image coordinates
on the focal plane of the second, rotated camera.

2.5.6 Two Views of a Planar Scene

A homography should also be estimated for planar scenes where correspondences
cannot uniquely define the epipolar geometry and hence the fundamental matrix.
Similar to Eq.2.7, the 2D-to-2D projection of the world plane π in Fig. 2.10 to the
left and right images is given by

λxx = HxX, λx ′x′ = Hx ′X,

where Hx ,Hx ′ are 3 × 3 homography matrices (homographies) and x, x′ are homo-
geneous image coordinates. The planar homographies form a group, and hence we
can form a composite homography as H = Hx ′H−1

x and it is straightforward to show
that

λx′ = Hx.

Figure2.10 illustrates this mapping from x to x′ and we say that a homography is
induced by the plane π . Homography estimation follows the same approach as was
described in Sect. 2.4.1 for a scene-to-image planar homography (replacing X with
x and x with x′ in Eqs. 2.8 to 2.10).



72 S. Se and N. Pears

Note that a minimum of four correspondences (no three points collinear in either
image) are required because, for the homography, each correspondence generates a
pair of constraints. Larger numbers of correspondences allow a least squares solution
to an over-determined system of linear equations. Again suitable normalizations are
required before SVD is applied to determine the homography.

A RANSAC-based technique can also be used to handle outliers, similar to the
fundamental matrix estimationmethod described in Sect. 2.5.4. By repeatedly select-
ing theminimal set of four correspondences randomly to computeH and counting the
number of inliers, the Hwith the largest number of inliers can be chosen. Additional
matches that are not in the original set of putative correspondences can be obtained
using the bestH. Then,H can be re-computed using all supportingmatches in a linear
least squares minimization using SVD.

Finally, we note that, as in the case of the fundamental matrix, a non-linear opti-
mization can be applied to refine the homography solution, if required by the appli-
cation. The interested reader is referred to [38] for the details of the geometric cost
function to be minimized.

2.6 Rectification

Typically, in a stereo rig, the cameras are horizontally displaced and rotated toward
each other by an equal amount (verged), in order to overlap their fields of view. In
this case, epipolar lines lie at a variety of angles across the two images, complicat-
ing the search for correspondences. In contrast, if these cameras had their principal
axes parallel to each other (no vergence) and the two cameras had identical intrin-
sic parameters, conjugate (corresponding) epipolar lines would lie along the same
horizontal scanline in each image, as observed in Sect. 2.5.3. This configuration is
knownas a standard rectilinear stereo rig.Clearly, it is desirable to retain the improved
stereo viewing volume associated with verged cameras and yet have the simplicity
of correspondence search associated with a rectilinear rig.

To achieve this, we can warp or rectify the raw images associated with the verged
system such that corresponding epipolar lines become collinear and lie on the same
scanline. A second advantage is that the equations for 3D reconstruction are very
simply related to image disparity after image rectification, since they correspond to
those of a simple rectilinear stereo rig. This triangulation computation is described
later in the chapter.

Rectification can be achieved either with camera calibration information, for
example, in a typical stereo application, or without calibration information, for exam-
ple, in a typical structure from motion application. We discuss the calibrated case
in the following subsection and give a brief mention of uncalibrated approaches in
Sect. 2.6.2.
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2.6.1 Rectification with Calibration Information

Here, we assume a calibrated stereo rig, where we know both the intrinsic and the
extrinsic parameters. Knowing this calibration information gives a simple rectifica-
tion approach, where we find an image mapping that generates, from the original
images, a pair of images that would have been obtained from a rectilinear rig. Of
course, the field of view of each image is still bound by the real original cameras, and
so the rectified images tend to be a different shape than the originals (e.g., slightly
trapezoidal in a verged stereo rig).

Depending on the lenses used and the required accuracy of the application, it may
be considered necessary to correct for radial distortion, using estimated parameters
k1 and k2 from the calibration. To do the correction, we employ Eq.2.6 in order
to compute the unknown, undistorted pixel coordinates, [x, y]T , from the known
distorted coordinates, [xd , yd ]T . There are various ways to solve this non-linear
equation, such as approximation of the Taylor series with the first-order derivatives,
a look-up table, or an iterative solution where the distorted pixel coordinates can be
used as the initial estimate.

Assuming some vergence, we wish to map the image points onto a pair of (virtual)
image planes that are parallel to the baseline and in the same plane. Thus we can use
the homography structure in Eq.2.19 that warps images between a pair of rotated
views. Given that we already know the intrinsic camera parameters, we need to
determine the rotation matrices associated with the rectification of the left and right
views. We will assume that the origin of the stereo system is at the optical center of
the left camera and calibration information gives [R, t] to define the rigid position
of the right camera relative to this. To get the rotation matrix that we need to apply
to image points of the left camera, we define the rectifying rotation matrix as

Rrect =
⎡
⎣
rT1
rT2
rT3

⎤
⎦ ,

where ri , i = 1 . . . 3 are a set of mutually orthogonal unit vectors. The first of these
is in the direction of the epipole or, equivalently, the direction of the translation to
the right camera, t. (This ensures that epipolar lines will be horizontal in the rectified
image.) Hence, the unit vector that we require is

r1 = t
||t|| .

The second vector r2 is orthogonal to the first and obtained as the cross-product of
t and the original left optical axis [0, 0, 1]T followed by a normalization to unit
length to give

r2 = 1√
t2x + t2y

[−ty, tx , 0]T .
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The third vector is mutually orthogonal to the first two and so is computed using the
cross-product as r3 = r1 × r2.

Given that the real right camera is rotated relative to the real left camera, we need
to apply a rotation RRrect to the image points of the right camera. Hence, applying
homographies to left and right image points, using the form of Eq.2.19, we have

xrect = KRrectK−1x

x′
rect = K′RRrectK′−1x′,

where K and K′ are the 3 × 3 matrices containing the intrinsic camera parameters
for the left and right cameras, respectively. Note that, even with the same make and
model of camera, we may find that the focal lengths associated with K and K′ are
slightly different. Thus we need to scale one rectified image by the ratio of focal
lengths in order to place them on the same focal plane.

As the rectified coordinates are, in general, not integer, resampling using some
form of interpolation is required. The rectification is often implemented in reverse,
so that the pixel values in the new image plane can be computed as a bilinear inter-
polation of the four closest pixels values in the old image plane. Rectified images
give a very simple triangulation reconstruction procedure, which is described later
in Sect. 2.8.1.2.

2.6.2 Rectification Without Calibration Information

When calibration information is not available, rectification can be achieved using
an estimate of the fundamental matrix, which is computed from correspondences
within the raw image data. A common approach is to compute a pair of rectifying
homographies for the left and right images [38, 54] so that the fundamental matrix
associated with the rectified images is the same form as that for a standard rectilinear
rig and the “new cameras” have the same intrinsic camera parameters. Since such
rectifying homographies map the epipoles to infinity ([1, 0, 0]T ), this approach fails
when the epipole lies within the image. This situation is common in structure from
motion problems, when the camera translates in the direction of its Z-axis. Several
authors have tackled this problem by directly resampling the original images along
their epipolar lines, which are specified by an estimated fundamental matrix. For
example, the image is reparameterized using polar coordinates around the epipoles
to reduce the search ambiguity to half epipolar lines [67, 68]. Figure2.11 shows an
example of an image pair before and after rectification for this scheme, where the
corresponding left and right features lie on the same image rowafterward. Specialized
rectifications exist, for example, [17] that allow image matching over large forward
translations of the camera although, in this scheme, rotations are not catered for.
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Fig. 2.11 An image pair before rectification (a) and after rectification (b). The overlay shows
that the corresponding left and right features lie on the same image row after rectification. Figure
courtesy of [68]

2.7 Finding Correspondences

Finding correspondences is an essential step for 3D reconstruction from multiple
views. The correspondence problem can be viewed as a search problem, which
asks, given a pixel in the left image, which is the corresponding pixel in the right
image? Of course there is something of a circular dependency here. We need to
find correspondences to determine the epipolar geometry, yet we need the epipolar
geometry to find (denser) correspondences in an efficient manner. The RANSAC
sampling approach described earlier showed us how to break into this loop. Once we
have the epipolar geometry constraint, the search space is reduced from a 2D search
to the epipolar line only.

The following assumptions underpin most methods for finding correspondences
in image pairs. These assumptions hold when the distance of the world point from
the cameras is much larger than the baseline.

• Most scene points are visible from both viewpoints.
• Corresponding image regions are similar.

Two questions are involved: what is a suitable image element to match and what
is a good similarity measure to adopt? There are two main classes of correspondence
algorithms: correlation-based and feature-based methods. Correlation-based meth-
ods recover dense correspondences where the element to match is an image window
centered on some pixel and the similarity measure is the correlation between the
windows. Feature-based methods typically establish sparse correspondences where
the element to match is an image feature and the similarity measure is the distance
between descriptors of the image features.

2.7.1 Correlation-Based Methods

If the element to match is only a single image pixel, ambiguous matches exist.
Therefore, windows are used for matching in correlation-based methods, and the
similarity criterion is a measure of the correlation between the twowindows. A larger
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Fig. 2.12 Correlation-based methods look for the matching image window between the left and
right rectified images. An m by m window centering at the pixel is used for correlation. (Raw
image pair courtesy of the Middlebury Stereo Vision Page [74], originally sourced from Tsukuba
University.)

window gives larger image context which can reduce the probability of ambiguities,
but this has its own problems which will be discussed in Sect. 2.8.1.1. The selected
correspondence is given by the window that maximizes a similarity criterion or
minimizes a dissimilarity criterion within a search range. Once a match is found, the
offset between the two windows can be computed, which is called the disparity from
which the depth can be recovered. Some commonly used criteria for correlation-
based methods are described next.

Based on the rectified images in Fig. 2.12, we define the window function, where
m, an odd integer, is the image window size so that

Wm(x, y) = {(u, v)|x − (m − 1)

2
≤ u ≤ x + (m − 1)

2
, y − (m − 1)

2
≤ v ≤ y + (m − 1)

2
}.

(2.20)
The dissimilarity can be measured by the Sum of Squared Differences (SSD) cost,

for instance, which is the intensity difference as a function of disparity d:

SSD(x, y, d) =
∑

(u,v)∈Wm (x,y)

[Il(u, v) − Ir (u − d, v)]2,

where Il and Ir refer to the intensities of the left and right images, respectively.
If two image windows correspond to the sameworld object, the pixel values of the

windows should be similar, and hence the SSD value would be relatively small. As
shown in Fig. 2.12, for each pixel in the left image, correlation-based methods would
compare the SSD measure for pixels within a search range along the corresponding
epipolar line in the right image. The disparity value that gives the lowest SSD value
indicates the best match.

A slight variation of SSD is the Sum of Absolute Differences (SAD) where the
absolute values of the differences are added instead of the squared values:
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SAD(x, y, d) =
∑

(u,v)∈Wm (x,y)

|Il(u, v) − Ir (u − d, v)|.

This cost measure is less computationally expensive as it avoids the multiplication
operation required for SSD. On the other hand, the SSD cost function penalizes the
large intensity difference more due to the squaring operation.

The intensities between the two image windows may vary due to illumination
changes and non-Lambertian reflection. Even if the two images are captured at the
same time by two cameras with identical models, non-Lambertian reflection and
differences in the gain and sensitivity can cause variation in the intensity. In these
cases, SSD or SAD may not give a low value even for the correct matches. For these
reasons, it is a good idea to normalize the pixels in each window. A first level of
normalization would be to ensure that the intensities in each window are zero-mean.
A second level of normalization would be to scale the zero-mean intensities so that
they either have the same range or, preferably, unit variance. This can be achieved by
dividing each pixel intensity by the standard deviation of window pixel intensities,
after the zero-mean operation, i.e., normalized pixel intensities are given as

In = I − Ī

σI
,

where Ī is the mean intensity and σI is the standard deviation of window intensities.
While SSD measures the dissimilarity and hence the smaller the better, Normalized
Cross-Correlation (NCC) measures the similarity and hence, the larger the better.
Again, the pixel values in the image window are normalized first by subtracting the
average intensity of thewindow so that only the relative variationwould be correlated.
The NCC measure is computed as follows:

NCC(x, y, d) =
∑

(u,v)∈Wm (x,y)(Il(u, v) − Il)(Ir (u − d, v) − Ir )√∑
(u,v)∈Wm (x,y)(Il(u, v) − Il)2(Ir (u − d, v) − Ir )2

,

where

Il = 1

m2

∑
(u,v)∈Wm (x,y)

Il(u, v), Ir = 1

m2

∑
(u,v)∈Wm (x,y)

Ir (u, v).

2.7.2 Feature-Based Methods

Rather than matching each pixel, feature-based methods only search for correspon-
dences to a sparse set of features, such as those located by a repeatable, well-localized
interest point detector (e.g., a corner detector). Apart from locating the features, fea-
ture extraction algorithms also compute some sort of feature descriptors for their
representation, which can be used for the similarity criterion. The correct correspon-
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dence is given by the most similar feature pair, the one with the minimum distance
between the feature descriptors.

Stable features are preferred in feature-based methods to facilitate matching
between images. Typical examples of image features are edge points, lines, and
corners. For example, a feature descriptor for a line could contain the length, the
orientation, coordinates of the mid-point, or the average contrast along the edge line.
A problem with linear features is that the matching can be poorly localized along
the length of a line particularly if a linear feature is fragmented (imagine a smaller
fragment from the left image sliding along a larger fragment from the right image).
This is known as the aperture problem, referring to the fact that a localmatch “looks
through” a small aperture.

As a consequence, point-based features that are well localized in two mutually
orthogonal directions have been preferred by researchers and practitioners in the field
of computer vision. For example, the Harris corner detector [37] extracts points that
differ as much as possible from neighboring points. This is achieved by looking for
high curvatures in twomutually orthogonal directions, as the gradient is ill-defined in
the neighborhood of corners. The corner strength or the grayscale values in a window
region around each corner could be used as the descriptor. Another corner detector
SUSAN [81] detects features based on the size, centroid, and second moments of the
local areas. As it does not compute image derivatives, it is robust to noise and does
not require image smoothing.

Wide baseline matching refers to the situation where the two camera views differ
considerably. Here, matching has to operate successfully over more difficult con-
ditions, since there are larger geometric and photometric variations between the
images.

In recent years, many interest point detection algorithms have been proposed that
are scale-invariant and viewpoint invariant to a certain extent which facilitates wide
baseline matching. An interest point refers to an image feature that is stable under
local and global perturbations, and the local image structure is rich in terms of local
image contents. These features are often described by a distinctive feature descriptor
which is used as the similarity criterion. They can be used even when epipolar
geometry is not yet known, as such distinctive descriptors allow correspondences to
be searched over the whole image relatively efficiently.

For example, the Scale-Invariant Feature Transform (SIFT) [48] and the Speeded-
Up Robust Feature (SURF) [5] are two traditional features which were developed
for image feature generation in object recognition applications. The SIFT feature is
described by a local image vector with 128 elements, which is invariant to image
translation, scaling, rotation, and partially invariant to illumination changes and affine
or 3D projections. Fig. 2.13 shows an example of matching SIFT features across
large baseline and viewpoint variation. It can be seen that most matches are correct,
thanks to the invariance and discriminative nature of SIFT features. Extraction of
such traditional features has been shown to be accurate and stable across views,
but they are rather slow to compute compared to more recent binary descriptors.
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Fig. 2.13 Wide baseline matching between two images with SIFT. The size and orientation of
the squares correspond to the scale and orientation of the matching SIFT features. The color lines
highlight some of the matches between the two images

These include BRIEF [15], BRISK [45], ORB [73], and FREAK [2], which are
more suitable for real-time performance on portable hardware of relatively limited
computational power.

2.8 3D Reconstruction

Different types of 3D reconstruction can be obtained based on the amount of a priori
knowledge available, as illustrated in Table2.2. The simplest method to recover 3D
information is stereo where the intrinsic and extrinsic parameters are known, and the
absolute metric 3D reconstruction can be obtained. This means we can determine
the actual dimensions of structures, such as height of door=1.93m.

For structure from motion, if no such prior information is available, only a pro-
jective 3D reconstruction can be obtained. This means that 3D structure is known
only up to an arbitrary projective transformation so we know, for example, howmany
planar faces the object has and what point features are collinear, but we do not know
anything about the scene dimensions and angular measurements within the scene. If
intrinsic parameters are available, the projective 3D reconstruction can be upgraded
to a metric reconstruction, where the 3D reconstruction is known up to a scale factor
(i.e., a scaled version of the original scene). There is more detail to this hierarchy of

Table 2.2 Different Types of 3D Reconstruction

A Priori Knowledge 3D Reconstruction

Intrinsic and extrinsic parameters Absolute 3D reconstruction

Intrinsic parameters only Metric 3D reconstruction (up to a scale factor)

No information Projective 3D reconstruction
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reconstruction than we can present here (for example, affine 3D reconstruction lies
between the metric and projective reconstructions) and we refer the interested reader
to [38].

2.8.1 Stereo

Stereo vision refers to the ability to infer information on the 3D structure and distance
of a scene from two or more images taken from different viewpoints. The disparities
of all the image points form the disparity map, which can be displayed as an image.
If the stereo system is calibrated, the disparity map can be converted to a 3D point
cloud representing the scene.

The discussion here focuses on binocular stereo for two image views only. Please
refer to [80] for a survey of multiple-view stereo methods that reconstruct a complete
3D model instead of just a single disparity map, which generates range image infor-
mation only. In such a 3D imaging scenario, there is at most one depth per image
plane point, rear-facing surfaces, and other self-occlusions are not imaged and the
data is sometimes referred to as 2.5D.

2.8.1.1 Dense Stereo Matching

The aim of dense stereo matching is to compute disparity values for all the image
points from which a dense 3D point cloud can be obtained. Correlation-based meth-
ods provide dense correspondences,while feature-basedmethods only provide sparse
correspondences. Dense stereo matching is challenging as textureless regions do not
provide information to distinguish the correct matches from the incorrect ones. The
quality of correlation-based matching results depends highly on the amount of tex-
ture available in the images and the illumination conditions. Repetitive texture does
not help though as the matching would be ambiguous.

Figure2.14 shows a sample disparity map after dense stereo matching. The dis-
parity map is shown in the middle with disparity values encoded in grayscale level.
The brighter pixels refer to larger disparities which means the object is closer. For
example, the ground pixels are brighter than the building pixels. An example of cor-
respondences is highlighted in red in the figure. The pixel itself and the matching
pixel are marked and linked to the right image. The length of the line corresponds to
the disparity value highlighted in the disparity map.

Comparing image windows between two images could be ambiguous. Various
matching constraints can be applied to help reduce the ambiguity, such as

• Epipolar constraint,
• Ordering constraint,
• Uniqueness constraint, and
• Disparity range constraint.
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Fig. 2.14 A sample disparity map (b) obtained from the left image (a) and the right image (c). The
disparity value for the pixel highlighted in red in the disparity map corresponds to the length of the
line linking the matching features in the right image. Figure courtesy of [68]

The epipolar constraint reduces the search from 2D to the epipolar line only, as
has been described in Sect. 2.5. The ordering constraint means that if pixel b is to
the right of a in the left image, then the correct correspondences a′ and b′ must also
follow the same order (i.e., b′ is to the right of a′ in the right image). This constraint
fails if there is occlusion.

The uniqueness constraint means that each pixel has at most one corresponding
pixel. In general, there is a one-to-one correspondence for each pixel, but there is
none in the case of occlusion or noisy pixels. The left-right consistency check can
be applied to ensure that the same match is obtained via both left-to-right and right-
to-left matching.

The disparity range constraint limits the disparity search range according to the
prior information of the expected scene.Maximumdisparity sets how close the object
can be, while the minimum disparity sets how far the object can be. Zero disparity
refers to objects at infinity.

One important parameter for these correlation-based methods is the window size
m in Eq.2.20. While using a larger window size provides more intensity variation
and hence more context for matching, this may cause problems around the occlusion
area and at object boundaries, particularly for wide baseline matching.

Figure2.15 shows the effect of window size on the resulting disparity map. The
disparity map in the middle is for a window size of 3 × 3. It can be seen that, while it
captures details well, it is very noisy, as the smaller window provides less information
for matching. The disparity map on the right is for a window size of 15 × 15. It can
be seen that while it looks very clean, the boundaries are not well defined. Moreover,
the use of a larger window size typically increases the processing time as more pixels
need to be correlated. The best window size is a trade-off between these two effects
and is dependent on the level of fine detail in the scene.

For local methods, disparity computation at a given point depends on the intensity
value within a local window only. The best matching window is indicated by the low-
est dissimilarity measure or the highest similarity measure which uses information
in the local region only. As pixels in an image are correlated (they may belong to
the same object, for instance), global methods could improve the stereo matching
quality by making use of information outside the local window region.
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Fig. 2.15 The effect of window size on correlation-based methods: (a) input images (b) disparity
map for a small correlationwindow (c) disparitymap for a large correlationwindow. (Raw imagepair
courtesy of the Middlebury Stereo Vision Page [74], originally sourced from Tsukuba University.)

Global methods perform optimization across the image and are often formulated
as an energy minimization problem. Dynamic programming approaches [6, 8, 19]
compute the minimum-cost path through the matrix of all pairwise matching costs
between two corresponding scanlines so that the best set of matches that satisfy
the ordering constraint can be obtained. Dynamic programming utilizes information
along each scanline independently; therefore, it may generate results that are not
consistent across scanlines.

TheGraph Cuts [12, 44] optimization technique makes use of information across
the whole image and produces high-quality disparity maps. There is a trade-off
between stereo matching quality and the processing time. Global methods such as
this, max flow [72], and belief propagation [83, 84] produce better disparity maps
than local methods, but they are computationally intensive.

Apart from the algorithm itself, the processing time also depends on the image
resolution, the window size, and the disparity search range. The higher the image
resolution, the more pixels need to be processed to produce the disparity map. The
similarity measure needs to correlate more pixels for a larger window size. The
disparity search range affects how many such measures need to be computed in
order to find the correct match.

Hierarchical stereo matching methods have been proposed by down-sampling
the original image into a pyramid [7, 70]. Dense stereo matching is first performed
on the lowest resolution image, and disparity ranges can be propagated back to the
finer resolution image afterward. This coarse-to-fine hierarchical approach allows
fast computation to deal with a large disparity range, as a narrower disparity range
can be used for the original image. Moreover, the more precise disparity search range
helps to obtain better matches in the low texture areas.

TheMiddlebury webpage [74] provides standard datasets with ground truth infor-
mation for researchers to benchmark their algorithms so that the performance of
various algorithms can be evaluated and compared. A wide spectrum of dense
stereo matching algorithms has been benchmarked, as illustrated in Fig. 2.16 [75].
Researchers can submit results of new algorithms which are ranked based on various
metrics, such as RMS error between computed disparity map and ground truth map,
percentage of bad matching pixels, and so on. It can be observed from Fig. 2.16 that
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Fig. 2.16 Comparative disparity maps for the top 15 dense stereo matching algorithms in [75] in
decreasing order of performance. The top left disparity map is the ground truth. Performance here
is measured as the percentage of bad matching pixels in regions where there are no occlusions.
This varies from 1.15% in algorithm 19 to 5.23% in algorithm 1. Algorithms marked with a ∗ were
implemented by the authors of [75], who present a wider range of algorithms in their publication.
Figure courtesy of [75]

it is very difficult to understand algorithmic performance by qualitative inspection
of disparity maps and the quantitative measures presented in [75] are required.

2.8.1.2 Triangulation

When the corresponding left and right image points are known, two rays from the
camera centers through the left and right image points can be back-projected. The
two rays and the stereo baseline lie on a plane (the epipolar plane) and form a triangle;
hence, the reconstruction is termed “triangulation”. Here, we describe triangulation
for a rectilinear arrangement of two views or, equivalently, two rectified views.
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Fig. 2.17 The stereo
geometry becomes quite
simple after image
rectification. The world
coordinate frame is
arbitrarily centered on the
right camera. B is the stereo
baseline, and f is the focal
length. Disparity is given by
d = xc − x ′

c

After image rectification, the stereo geometry becomes quite simple as shown
in Fig. 2.17, which shows the top-down view of a stereo system composed of two
pinhole cameras. The necessary parameters, such as baseline and focal length, are
obtained from the original stereo calibration. The following two equations can be
obtained based on the geometry:

x ′
c = f

X

Z

xc = f
X + B

Z
,

where x ′
c and xc are the corresponding horizontal image coordinates (in metric units)

in the right and left images, respectively, f is the focal length, and B is the baseline
distance.

Disparity d is defined as the difference in horizontal image coordinates between
the corresponding left and right image points, given by

d = xc − x ′
c = f B

Z
.

Therefore,

Z = f B

d
(2.21)

X = Zx ′
c

f
, Y = Zy′

c

f
,

where y′
c is the vertical image coordinates in the right image.
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This shows that the 3D world point can be computed once disparity is available:
(x ′

c, y
′
c, d) 
→ (X,Y, Z). Disparity maps can be converted into depth maps using

these equations to generate a 3D point cloud. It can be seen that triangulation is
straightforward compared to the earlier stages of computing the two-view relations
and finding correspondences.

Stereo matches are found by seeking the minimum of some cost functions across
the disparity search range. This computes a set of disparity estimates in some dis-
cretized space, typically integer disparities, which may not be accurate enough for
3D recovery. 3D reconstruction using such quantized disparity maps leads to many
thin layers of the scene. Interpolation can be applied to obtain sub-pixel disparity
accuracy, such as fitting a curve to the SSD values for the neighboring pixels to find
the peak of the curve, which provides more accurate 3D world coordinates.

By taking the derivatives of Eq.2.21, the standard deviation of depth, which rep-
resents uncertainty of depth estimation, is given by

ΔZ = Z2

B f
Δd,

whereΔd is the standard deviation of the disparity. This equation shows that the depth
uncertainty increases quadratically with depth. Therefore, stereo systems typically
are operated within a limited range. If the object is far away, the depth estimation
becomes more uncertain. The depth error can be reduced by increasing the baseline,
focal length, or image resolution. However, each of these has detrimental effects.
For example, increasing the baseline makes matching harder as features appear less
similar and causes viewed objects to self-occlude, increasing the focal length reduces
the depth of field, and increasing image resolution increases processing time and data
bandwidth requirements. Thus, we can see that design of stereo cameras typically
involves a range of performance trade-offs, where trade-offs are selected according
to the application requirements.

Figure2.18 compares the depth uncertainty for three stereo configurations assum-
ing a disparity standard deviation of 0.1 pixel. A stereo camera with higher resolution
(dashed line) provides better accuracy than the onewith lower resolution (dotted line).
A stereo camera with a wider baseline (solid line) provides better accuracy than the
one with a shorter baseline (dashed line).

A quick and simple method to evaluate the accuracy of 3D reconstruction is to
place a highly textured planar target at various depths from the sensor, fit a least
squares plane to the measurements, and measure the residual RMS error. In many
cases, this gives us a good measure of depth repeatability, unless there are signif-
icant systematic errors, for example, from inaccurate calibration of stereo camera
parameters. In this case, more sophisticated processes and ground truth measure-
ment equipment are required. Capturing images of a target of known size and shape
at various depths, such as a textured cube, can indicate how reconstruction performs
when measuring in all three spatial dimensions.
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Fig. 2.18 A plot illustrating the stereo uncertainty with regard to image resolution and baseline
distance. A larger baseline and higher resolution provide better accuracy, but each of these has other
costs

2.8.2 Structure from Motion

Structure frommotion (SfM) is the simultaneous recovery of 3D structure and camera
relative pose (position and orientation) from image correspondences, and it refers
to the situation where images are captured by a moving camera. There are three
sub-problems in structure from motion.

• Correspondence: which elements of an image frame correspond to which elements
of the next frame.

• Ego-motion and reconstruction: determination of camera motion (sometimes
called ego-motion) and structure of the observed world.

• Segmentation: extraction of regions corresponding to one or more moving objects.

The third sub-problem is a relatively recent problem in structure from motion,
where some objects in the scene may have moved between frames. For dynamic
scenes, features belonging to moving objects could be identified and removed as
outliers. Alternatively one could consider an environment to contain an unknown
number (n) of independently moving objects and a static environment as n + 1 SfM
sub-problems, eachhaving their ownFmatrix.However, for the followingdiscussion,
we assume that the scene is static, without any moving objects.

By matching features between frames, we obtain at least eight correspondences
from which the fundamental matrix can be recovered as described in Sect. 2.5.4.
Without camera calibration parameters, only the projective reconstruction can be
obtainedwhere orthogonal lines in the worldmay not be reconstructed as orthogonal.
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While this may be useful by itself, most practical applications require at least metric
reconstructionwhere the reconstructed 3Dmodel is a scaled version of the real scene.

Metric reconstruction requires camera intrinsic parameterswhich canbe estimated
from the images themselves using self-calibration (auto-calibration) techniques [38,
55] developed in recent years. Such methods exploit some prior information of the
scene itself such as parallel lines, vanishing points, and so on. For better accuracy and
more robustness, the camera intrinsic parameters can be obtained with a calibration
procedure using a known calibration grid, as discussed in Sect. 2.4.

Once the camera intrinsic parameters are known, the essential matrix E can be
computed from the fundamental matrix. According to Eq.2.15, the motion can be
recovered from E, where t is determined up to a scale factor only (since we can
multiply Eq.2.16 by an arbitrary non-zero scale factor). The physical insight into
this is that the same image disparity between a pair of views can occur for a point
close to the camera positions and a point n-times the distance away with n-times the
translation. Effectively, we have scaled similar triangles in the triangulation-based
reconstruction process.

SVD can be applied to extract t and R from E as follows [38]. Application of
SVD gives the factorization E = UDVT . By defining

W =
⎡
⎣
0 −1 0
1 0 0
0 0 1

⎤
⎦ , Z =

⎡
⎣

0 1 0
−1 0 0
0 0 0

⎤
⎦ ,

the solution is given by
R = UWVT or UWTVT

t = ±u3,

where u3 is the third column of matrixU. With two possible choices ofR and t, there
are four possible solutions. Testing with a single point to determine if it is in front of
both cameras is sufficient to decide among the four different solutions. For further
details, please refer to [38].

Once t (up to scale) and R have been extracted from E, the sparse scene structure
can be recovered by computing the intersection between the back-projected rays. In
general, due to measurement noise, these will not intersect in 3D space. The simplest
solution is to compute the mid-point of the shortest perpendicular line between the
two rays. However, a refined solution is to choose a reconstructed scene point X,
such that it minimizes the sum of square errors between the actual image positions
and their positions predicted by their respective camera projection matrices. The
scene structure is only determined up to a scale factor but in some applications this
could be constrained, for example, if some measurement is known in the scene,
or the translation can be estimated from the wheel odometry of a mobile robot. In
summary, this method first estimates the intrinsic camera parameters (or uses an
existing calibration) after which the extrinsic camera parameters are recovered. Both
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the intrinsic and extrinsic camera parameters are then used to compute the scene
structure.

Alternatively, bundle adjustment14 offers a more accurate method that simulta-
neously optimizes the 3D structure and the 6-DOF camera pose (extrinsic camera
parameters) for each view in an image sequence [88]. Sometimes the intrinsic camera
parameters are also refined in the procedure. This is a batch process that iteratively
refines the camera parameters and the 3D structure in order to minimize the sum
of the reprojection errors. (A reprojection error is the Euclidean distance between
an image feature and its reprojection into the image plane after computing the 3D
world coordinate and the camera pose associated with that image point.) Since a spe-
cific reprojection error is only dependent on its own scene point and own viewpoint,
the structure of the equations is sparse. Thus, even though bundle adjustments are
thought to be fairly computationally expensive, exploitation of sparse linear algebra
algorithms can significantly mitigate this. Such procedures are referred to as sparse
bundle adjustment.

Using consecutive video frames gives poor 3D accuracy due to the very short
baseline. An image pair formed by a larger time increment would provide better
3D information. However, if the time increment is too large, the camera could have
moved significantly and it would be harder to establish correct correspondences. One
possible solution to this is to track features over several short baseline frames using
a small, local area-based search, before computing 3D from a pair of frames tracked
over a significantly longer baseline.

2.9 Deep Learning for Passive 3D Imaging

Recently, deep learning has proved to provide the best solutions to many problems
in image classification, speech recognition, and natural language processing. Essen-
tially, application of this powerful technology involves formulation of optimization
problems that havewell-behaved differentials, thus enabling gradient descent to func-
tion well. Deep learning has also been applied successfully to passive 3D imaging
in two modalities: improving stereo matching and inferring depth from monocular
imagery.

2.9.1 Deep Learning for Stereo Matching

A Convolutional Neural Network (CNN) was trained to predict how well two image
patchesmatch and itwas used to compute the stereomatching cost [96]. The proposed
network consisted of eight layers and achieved the best performance in the KITTI

14Bundle adjustment methods appeared several decades ago in the photogrammetry literature and
are now used widely in the computer vision community.
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dataset [35]. While [96] focused on comparing patches in narrow baseline stereo, a
general similarity functionwas learned from image data in [95] to handle a broader set
of appearance changes so that it can be used in more challenging set of applications
includingwide baseline stereo. Various neural network architectures such as Siamese
and 2-channel models were explored, showing that they exhibited good performance
andoutperformed the state-of-the-art onwide baseline stereomatching.Adot product
layerwas exploited to compute the inner product between the two representations of a
Siamese architecture, which achieved an order of magnitude faster computation [50].
The network was trained by treating the problem as multi-class classification where
the classes are all possible disparities. As a result, correlations between different
disparities can be captured implicitly, whereas the previous approaches performed
independent binary predictions on image patches.

2.9.2 Deep Learning for Monocular Reconstruction

Depth was estimated from a single image by integrating both global and local
information from various cues [27]. A multi-scale CNN approach was proposed
by employing two deep network stacks: one for a coarse global prediction based
on the entire image and another to refine the prediction locally. A scale-invariant
error was applied to help measure depth relations rather than scale. The proposed
method achieved state-of-the-art results on both NYU Depth and KITTI datasets.
A deep structured learning scheme was proposed to learn the unary and pairwise
potentials of continuous Conditional Random Field (CRF) in a unified deep CNN
framework [46]. Using a faster model based on fully convolutional networks and a
novel superpixel pooling method resulted in 10 times speedup while producing sim-
ilar prediction accuracy. The proposed method outperformed state-of-the-art results
on various indoor and outdoor scenes. While both [27] and [46] require vast quanti-
ties of ground truth depth data for training, an unsupervised approach was proposed
in [36] to perform single image depth estimation without the use of ground truth
depth data for training. Disparity images were generated by training the CNN with
an image reconstruction loss using binocular stereo data. A novel training loss that
enforced left–right consistency was employed to improve performance and robust-
ness. The proposed method produced state-of-the-art results for monocular depth
estimation on KITTI dataset, even outperforming supervised methods that have been
trained with ground truth depth data. Recently, Wu et al. [92] described how to learn
shape priors for monocular 3D completion. Their approach integrates deep genera-
tive models with adversarially learned shape priors, where the learned priors act as
a regularizer, penalizing the model if its output is unrealistic.
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2.10 Passive Multiple-View 3D Imaging Systems

Examples of passive multiple-view 3D imaging systems and their applications
will now be presented, including stereo cameras, people counting, 3D modeling,
and visual SLAM. 3D modeling systems generate photo-realistic 3D models from
sequences of images and have awide range of applications. Formobile robot applica-
tions, passive multiple-view 3D imaging systems are used for localization, building
maps, and obstacle avoidance.

2.10.1 Stereo Cameras

Stereo cameras can be custom-built by mounting two individual cameras on a rigid
platform separated by a fixed baseline. However, it is important that, for non-static
scenes or formobile platforms, the two cameras are synchronized so that they capture
images at the same time. In order to obtain absolute 3D information, as discussed
earlier in Table2.2, the stereo camera needs to be calibrated to recover the intrinsic
and extrinsic parameters. It is also critical that the relative camera pose does not
change over time; otherwise, re-calibration would be required.

Commercial off-the-shelf (COTS) stereo vision systems have been emerging in
recent years. These cameras often have a fixed baseline and are pre-calibrated by the
vendor. Typically, they are nicely packaged and convenient to use. There are a number
of pre-calibratedCOTSstereo camera available such asTara fromE-conSystemswith
6cm baseline [26] and DUO MC from Code Laboratories with 3cm baseline [25].
The FLIR Bumblebee camera [33] is another example with 12cm baseline, which
comes pre-calibrated, and an application programming interface (API) is provided
to configure the camera and grab images, as well as rectify the images and perform
dense stereo matching. FLIR also offers Bumblebee XB3 which is a three-sensor
multi-baseline stereo camera which has both 12cm and 24cm baselines available for
stereo processing. The wide baseline provides more precision at longer range, while
the narrow baseline improves close range matching and minimum-range limitation.

It is desirable to obtain disparity maps in real time in many applications, for
example, obstacle detection for mobile robots. Dense stereo matching can be highly
parallelized; therefore, such algorithms are highly suitable to run on graphics process-
ing units (GPUs) to free up the CPU for other tasks. GPUs have a parallel throughput
architecture that supports executing many concurrent threads, providing immense
speedup for highly parallelized algorithms. A dense stereo matching algorithm has
been implemented on a commodity graphics card [94] to perform several hundred
millions of disparity evaluations per second. This corresponds to 20Hz for 512× 512
image resolution with 32 disparity search range.

StereolabsZEDstereo camera [82] is a stereo camerawith 12cmbaseline for depth
sensing and motion tracking. It relies on the use of NVIDIA GPU for processing and
provides real-time depth data as well as camera pose. Stereolabs also offers a mini
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Fig. 2.19 FLIR Bumblebee XB3 stereo camera with three cameras provides both narrow and wide
baseline configurations (left) and Stereolabs ZED stereo camera (right)

Fig. 2.20 Examples of hazard detection using stereo images: a truck (left) and a person (right).
Hazards are shown in red on the hazard map

versionwith 6cmbaseline for augmented reality application. Two of theCOTS stereo
cameras mentioned are shown in Fig. 2.19.

Stereo cameras are often used for obstacle/hazard detection in mobile robots as
they can capture the 3D scene instantaneously. Figure2.20 shows the stereo images
fromBumblebee XB3 and the resulting hazard maps for a truck and a person, respec-
tively. Correlation-based matching is performed to generate a dense 3D point cloud.
Clusters of point cloud that are above the ground plane are considered as hazards.

2.10.2 People Counting

People counting for retail analytics is a key market for passive stereo cameras. The
stereo cameras are mounted on the ceiling of retail store entrances, pointing down to
count the number of people walking in and out of the store. Based on the disparity or
3D point cloud, people are detected and tracked as they walk across the camera field-
of-view. Enter/exit counts are incremented when the tracks cross a pre-defined count
line. Such information can be used to generate retail analytics such as conversion
rates (proportion of customers who make a purchase), to optimize staff scheduling,
and so on.

Stereo cameras provide better counting accuracy thanmonocular cameras, as they
are more tolerant of lighting changes and can avoid counting shadows. Moreover,
the 3D data can be used to distinguish between people and shopping carts as well as
between adults and children. Currently, there are a number of successful stereo-based
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Fig. 2.21 Examples of stereo-based people counters for retail analytics: FLIR Brickstream camera
(left) and Xovis PC2 camera (right)

people counters offered by various vendors including FLIR, Xovis, Axper, andHella.
Two of these are shown in Fig. 2.21.

2.10.3 3D Modeling

The creation of photo-realistic 3D models of observed scenes has been an active
research topic for many years. Such 3Dmodels are very useful for both visualization
and measurements in various applications such as planetary rovers, defense, mining,
forensics, archaeology, and virtual reality.

Pollefeys et al. [68] and Nister [60] presented systems which create surface mod-
els from a sequence of images taken with a hand-held video camera. The camera
motion is recovered bymatching corner features in the image sequence. Dense stereo
matching is carried out between the frames. The input images are used as surface tex-
ture to produce photo-realistic 3D models. These monocular approaches only output
a scaled version of the original scene but can be scaled with some prior information.
Moreover, it requires a long processing time.

The objective of theDARPAUrbanscape project [56] is to develop a real-time data
collection and processing system for the automatic geo-registered 3D reconstruction
of urban scenes fromvideo data.Multiple video streams aswell asGlobal Positioning
System (GPS) and Inertial Navigation System (INS) measurements are collected to
reconstruct photo-realistic 3D models and place them in geo-registered coordinates.
An example of a large-scale 3D reconstruction is shown in Fig. 2.22.

A stereo camera-based 3D vision system is capable of quickly generating cali-
brated photo-realistic 3D models of unknown environments. Instant Scene Modeler
(iSM) can process stereo image sequences captured by an unconstrained hand-held
stereo camera [77]. Dense stereo matching is performed to obtain 3D point clouds
from each stereo pair. 3D point clouds from each stereo pair are merged together to
obtain a color 3D point cloud. Furthermore, a surface triangular mesh is generated
from the point cloud. This is followed by texture mapping, which involves mapping
image textures to the mesh triangles. As adjacent triangles in the mesh may use dif-
ferent texture images, seamlines may appear unless texture blending is performed.
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Fig. 2.22 An example of 3Dmodeling of urban scene from theUrbanscape project. Figure courtesy
of [56]

Fig. 2.23 The user points the stereo camera freely at the scene of interest (left), and the photo-
realistic 3D model of the scene is generated (right). Figure adapted from [77]

The resulting photo-realistic 3D models can be visualized from different views, and
absolute measurements can be performed on the models. Figure2.23 shows the user
pointing the hand-held COTS stereo camera to freely scan the scene and the resulting
photo-realistic 3D model, which is a textured triangular mesh.

For autonomous vehicles and planetary rovers, the creation of 3D terrain models
of the environment is useful for visualization and path planning [4]. Moreover, the
3D modeling process achieves significant data compression, allowing the transfer of
data as compact surfacemodels instead of raw images. This is beneficial for planetary
rover exploration due to the limited bandwidth available. Figure2.24 shows a photo-
realistic 3D model created from a moving autonomous vehicle that traveled in a
desert in Nevada.

One of the key technologies required for planetary rover navigation is the ability
to sense the nearby 3D terrain. Stereo cameras are suitable for planetary exploration,
thanks to their low power, low mass requirements, and the lack of moving parts.
The NASA Mars Exploration Rovers (MERs), named Opportunity and Spirit, use
passive stereo image processing tomeasure geometric information about the environ-
ment [52]. This is done by matching and triangulating pixels from a pair of rectified
stereo images to generate a 3D point cloud. Figure2.25 shows an example of the
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Fig. 2.24 First image of a sequence captured by an autonomous rover in a desert in Nevada (left).
Terrain model generated with virtual rover model inserted (right). Resulting terrain model and rover
trajectory (bottom). Figure courtesy of [4]

Fig. 2.25 Mars Exploration Rover stereo image processing (left) and the reconstructed color 3D
point cloud (right), with a virtual rover model inserted. Figure courtesy of [52]

stereo images captured and the color 3D point cloud generated which represents the
imaged terrain.

Documenting crime scenes is a tedious process that requires the investigators to
record vast amounts of data by using video, still cameras, andmeasuring devices, and
by taking samples and recording observations. With passive 3D imaging systems,
3D models of the crime scene can be created quickly without much disturbance to
the crime scene. The police can also perform additional measurements using the 3D
model after the crime scene is released. The 3D model can potentially be shown in
court so that the judge and the jury can understand the crime scene better. Figure2.26
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Fig. 2.26 3D model of a mock crime scene obtained with a hand-held stereo camera. Figure
courtesy of [78]

Fig. 2.27 Underground mine 3D model (left) and consecutive 3D models as the mine advances
(right). The red and blue lines on the left are geological features annotated by geologists to help
with the ore body modeling. Figure courtesy of [78]

shows a 3D reconstruction of a mock crime scene generated from a hand-held stereo
sequence within minutes after acquisition [78].

Photo-realistic 3D models are useful for survey and geology in underground min-
ing. The mine map can be updated after each daily drill/blast/ore removal cycle to
minimize any deviation from the plan. In addition, the 3D models can also allow
the mining companies to monitor how much ore is taken at each blast. Figure2.27
shows a photo-realistic 3D model of an underground mine face annotated with geo-
logical features and consecutive 3D models of a mine tunnel created as the mine
advances [78].

Airborne surveillance and reconnaissance are essential for successful military
missions. Unmanned Aerial Vehicles (UAVs) are becoming the platform of choice
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Fig. 2.28 3D reconstruction of a building on the ground using video (left) and using infrared video
(right) captured by an UAV (Unmanned Aerial Vehicle). Figure courtesy of [76]

for such surveillance operations, and video cameras are among the most common
sensors onboard UAVs. Photo-realistic 3Dmodels can be generated fromUAV video
data to provide situational awareness as it is easier to understand the scene by visu-
alizing it in 3D. The 3D model can be viewed from different perspectives and allow
distance measurements and line-of-sight analysis. Figure2.28 shows a 3D recon-
struction of a building on the ground using video and infrared video captured by an
UAV [76]. The photo-realistic 3D models are geo-referenced and can be visualized
in 3D Geographical Information System (GIS) viewers such as Google Earth.

Deep learning has also been applied to 3D reconstruction.A novel recurrent neural
network architecture was proposed for single- and multi-view 3D object reconstruc-
tion by learning a mapping from observations to their underlying 3D shape [18]. The
network took one or more images of an object instance from arbitrary viewpoints
to output a reconstruction of the object in the form of a 3D occupancy grid. Experi-
mental results showed that the proposed framework outperformed the state-of-the-art
method for single-view reconstruction. It worked well in situations where traditional
SfMmethods failed due to the lack of texture or wide baselines. An encoder–decoder
network was proposed for single-view 3D object reconstruction with a novel projec-
tion loss defined by the perspective transformation [93]. The projection loss enabled
unsupervised learning using 2D observation without ground truth 3D training data.
A single network for multi-class 3D object reconstruction was trained, with gener-
alization potential to unseen categories.

2.10.4 Visual SLAM

Mobile robot localization and mapping is the process of simultaneously tracking
the position of a mobile robot relative to its environment and building a map of the
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Fig. 2.29 (a) Autonomous rover on a gravel test site with obstacles (b) Comparison of the estimated
path by SLAM, wheel odometry, and DGPS (Differential GPS). Figure courtesy of [4]

environment. Accurate localization is a prerequisite for building a good map and
having an accurate map is essential for good localization. Therefore, Simultaneous
Localization and Mapping (SLAM) is a critical underlying capability for successful
mobile robot applications. To achieve a SLAM capability, high-resolution passive
vision systems can capture images in milliseconds, and hence they are suitable for
moving platforms such as mobile robots.

Stereo vision systems are commonly used on mobile robots, as they can measure
the full six degrees of freedom (DOF) of the change in robot pose. This is known as
visual odometry. By matching visual landmarks between frames to recover the robot
motion, visual odometry is not affected bywheel slip and hence is more accurate than
the wheel-based odometry. For outdoor robots with GPS receivers, visual odometry
can also augment the GPS to provide better accuracy, and it is also valuable in
environments where GPS signals are not available.

Unlike in 3Dmodelingwhere correlation-based dense stereomatching is typically
performed, feature-based matching is sufficient for visual odometry and SLAM;
indeed, it is preferable for real-time robotics applications, as it is computationally
less expensive. Such features are used for localization, and a feature map is built at
the same time.

The MERs Opportunity and Spirit are equipped with visual odometry capabil-
ity [53]. An update to the rover’s pose is computed by tracking the motion of
autonomously selected terrain features between two pairs of stereo images. It has
demonstrated good performance and successfully detected slip ratios as high as 125%
even while driving on slopes as high as 31 degrees.

As SIFT features [48] are invariant to image translation, scaling, rotation, and
fairly robust to illumination changes and affine or even mild projective deforma-
tion, they are suitable landmarks for robust SLAM. When the mobile robot moves
around in an environment, landmarks are observed over time but from different
angles, distances, or under different illuminations. SIFT features are extracted and
matched between the stereo images to obtain 3D SIFT landmarks which are used
for indoor SLAM [79] and for outdoor SLAM [4]. Figure2.29 shows a field trial of
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an autonomous vehicle at a gravel test site with obstacles and a comparison of rover
localization results. It can be seen that the vision-based SLAM trajectory is much
better than the wheel odometry and matches well with theDifferential GPS (DGPS).

Monocular visual SLAM applications have been emerging in recent years which
only require a single camera. The results are up to a scale factor but can be scaled
with some prior information. A number of different approaches have gained in pop-
ularity, which can be categorized in two axes: direct versus indirect approaches as
well as dense versus sparse methods [29]. Indirect approaches first pre-process the
raw sensor measurements to generate an intermediate representation such as fea-
ture correspondences, which are then interpreted as noisy measurements to estimate
geometry and camera motion. Direct approaches skip the pre-processing step and
use the actual sensor values directly as measurement. In the case of passive vision,
direct approaches optimize a photometric error, while indirect approaches optimize
a geometric error.

Dense methods use and reconstruct all pixels in the 2D image, while sparse meth-
ods use and reconstruct only a selected set of feature points such as corners. In sparse
formulation, there is no notion of neighborhood, as feature positions are conditionally
independent given the camera poses and intrinsics. Dense methods exploit the con-
nectedness of the image region to formulate a geometry prior, favoring smoothness,
which is often necessary to make a dense world model. Such a geometric prior may
introduce bias which could reduce long-term large-scale accuracy and may make
it infeasible to have a consistent joint optimization in real time. The various visual
SLAM approaches can be categorized into the following four categories:

• Sparse + indirect approach is the most widely used formulation where keypoint
correspondences are used to estimate 3D geometry, such as MonoSLAM [23],
PTAM [43], and ORB-SLAM [57].

• Dense + indirect approach estimates 3Dgeometry froma dense, regularized optical
flow field, such as [71].

• Dense + direct approach employs a photometric error as well as a geometric prior
to estimate dense geometry, such as DTAM [59] and LSD-SLAM [28].

• Sparse + direct approach optimizes a photometric error without incorporating a
geometric prior, such as [29].

Given the recent advances in depth prediction from monocular imagery using
CNNs, researchers have investigated how to improve visual SLAM with deep learn-
ing. CNN-predicted dense depth maps were fused together with depth measurements
obtained from direct monocular SLAM [85]. The fusion scheme prioritized CNN
depth prediction in image locations where monocular SLAM approaches tend to
fail. CNN depth prediction also estimated the absolute scale of the reconstruction,
hence overcoming one of the major limitations of monocular SLAM.
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2.11 Passive Versus Active 3D Imaging Systems

Before concluding, we briefly compare passive multiple-view 3D imaging systems
and their active imaging counterpart, as a bridge between this and the following
chapter. Passive systems do not emit any illumination and only perceive the ambient
light reflected from the scene. Typically, this is reflected sunlight when outdoors, or
the light, reflected from standard room lighting when indoors. On the other hand,
active systems include their own source of illumination, which has twomain benefits:

• 3D structure can be determined in smooth, textureless regions. For passive stereo,
it is impossible to extract features and correspondences in such circumstances.

• The correspondence problem either disappears, for example, a single spot of light
may be projected at any one time, or is greatly simplified by controlling the struc-
ture of the projected light.

The geometric principle of determining depth from a light (or other EMR) pro-
jector (e.g., laser) and a camera is identical to the passive binocular stereo situation.
The physical difference is that, instead of using triangulation applied to a pair of
back-projected rays, we apply triangulation to the axis of the projected light and a
single back-projected ray.

Compared with active approaches, passive systems are computationally intensive
as the 3D data is computed from processing the images andmatching image features.
Moreover, the depth data could be noisier as it relies on the natural texture in the
scene and ambient lighting condition. Unlike active scanning systems such as laser
scanners, cameras could capture complete images in milliseconds; hence, they can
be used as mobile sensors or operate in dynamic environments. The cost, size, mass,
and power requirements of cameras are generally lower than those of active sensors.

2.12 Concluding Remarks

Oneof the key challenges for 3Dvision researchers is to develop algorithms to recover
accurate 3D information robustly under a wide range of illumination conditions, a
task that can be done by humans so effortlessly. While 3D passive vision algorithms
have been maturing over the years, this is still an active topic in the research commu-
nity and at major computer vision conferences. Many algorithms perform reasonably
well with test data but there are still challenges to handle scenes with uncontrolled
illumination. Deep learning, in the form of many-layered neural networks, continues
to have a big impact on this area. Passive 3D imaging systems are becoming more
prevalent as cameras are getting cheaper and computers are fast enough to handle
the intensive processing requirements. Thanks to hardware acceleration and GPUs,
embedded real-time applications are becoming more robust, leading to a growing
number of real-world applications.

After working through this chapter, you should be able to
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• Explain the fundamental concepts and challenges of passive 3D imaging systems.
• Explain the principles of epipolar geometry.
• Solve the correspondence problem by correlation-based and feature-based tech-
niques (using off-the-shelf feature extractors).

• Estimate the fundamental matrix from correspondences.
• Perform dense stereo matching and compute a 3D point cloud.
• Explain the principles of structure from motion.
• Explain how deep learning can be applied to 3D imaging.
• Provide example applications of passive 3D imaging systems.

2.13 Further Reading

Two-view geometry is studied extensively in [38], which also covers the equivalent
of epipolar geometry for three or more images. The eight-point algorithm was pro-
posed in [39] to compute the fundamental matrix, while the five-point algorithm was
proposed in [61] for calibrated cameras. Reference [88] provides a good tutorial and
survey on bundle adjustment, which is also covered in textbooks [30, 38] and a recent
survey article [55].

Surveys such as [75] serve as a guide to the extensive literature on stereo imaging.
Structure from motion is extensively covered in review articles such as [55]. A step-
by-step guide to 3D modeling from images is described in detail in [51]. Non-rigid
structure from motion for dynamic scenes is discussed in [87].

Multiple-view 3D vision, particularly in the context of deep learning, continues to
be highly active research topics, and some of the major computer vision conferences
include the International Conference on Computer Vision (ICCV), IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), and the European Conference
on Computer Vision (ECCV). Some of the relevant major journals include Interna-
tional Journal of Computer Vision (IJCV), IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), and Image and Vision Computing (IVC).

The following websites provide comprehensive online resources for computer
vision including 3D passive vision topics and are being updated regularly.

• CVonline [31] provides an online compendium of computer vision.
• VisionBib.Com [69] contains annotated bibliography on a wide range of computer
vision topics, as well as references to available datasets.

Due to limited space, there are areas of passive 3D imaging that we were unable to
cover. For example, we have assumed that we are using imaging in themedium of air,
yet many applications require underwater imaging, such as Unmanned Underwater
Vehicles (UUVs). A useful function of such UUVs is to perform a reconstruction
of the seabed or some artefact on the seabed, such as a shipwreck. This poses sev-
eral problems that we have not considered, such as the refractive properties of the
air–glass–water interface affecting the camera’s intrinsic parameters. Furthermore,
images are blurred due to light scattering, and visibility is often poor due to suspended



2 Passive 3D Imaging 101

particles. An interesting case study of the XlendiWreck inMalta is provided by Drap
et al. [24], which employs underwater photogrammetry and object modeling.

Also, we did not extensively detail methods that can deal with missing parts
due to insufficient texture for multiple-view matching, or due to self-occlusion. In
applications when the class of object to be reconstructed is known, it is possible
to learn a shape prior, for example, as a 3D Morphable Model (3DMM). Given a
3DMM,missing parts can then be inferred from the reconstructed parts. Suchmodels
are discussed extensively in a later chapter of this book. Furthermore, recent work
has applied deep learning to the combined problem of monocular reconstruction and
shape completion [92].

2.14 Software Resources

As 3D reconstruction is now a mature technology, there are a variety of software
packages that can perform 3D reconstruction from a series of 2D images. Open-
source 3D modeling packages include OpenMVG [63] and OpenMVS [64]. Open
Multiple-View Geometry (OpenMVG) is a library for computer vision scientists tar-
geted the multiple-view geometry community. It provides an easy access to classical
problem solvers in multiple-view geometry, such as structure from motion, which
recovers camera poses and a sparse 3D point cloud from a set of input images.
Open Multi-View Stereo (OpenMVS) focuses on the last part of the reconstruction
pipeline by providing a set of algorithms to recover the full surface of the scene.
The input is a set of camera poses plus the sparse point cloud, and the output is a
photo-realistic 3D model in the form of a textured mesh. There are other free open-
source 3D reconstruction software packages, such as AliceVision’s Meshroom [3].
Furthermore,OpenCV [62] is a free general open-source computer vision library that
is useful in a wide range of passive 3D applications. There are several commercial
3D reconstruction packages available, sometimes called photogrammetry packages
and sometimes with educational licenses. For example, the Agisoft company has the
Metashape package [1], which is a development of their earlier Photoscan product.
Another is Pix4D [66], which is targeted at drone-based aerial mapping.

2.15 Questions

1. What are the differences between passive and active 3D vision systems?
2. Name two approaches to recover 3D from single images and two approaches to

recover 3D from multiple images.
3. What is the epipolar constraint and how can you use it to speed up the search for

correspondences?
4. What are the differences between essential and fundamental matrices?
5. What is the purpose of rectification?
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6. What are the differences between correlation-based and feature-based methods
for finding correspondences?

7. What are the differences between local and global methods for dense stereo
matching?

8. What are the differences between stereo and structure from motion?
9. What are the factors that affect the accuracy of stereo vision systems?
10. What are two use cases of applying deep learning to 3D imaging?

2.16 Exercises

Experimenting with stereo imaging requires that you have two images of a scene
from slightly different viewpoints, with a good overlap between the views, and a
significant number of well-distributed corner features that can be matched. You will
also need a corner detector. There are many stereo image pairs and corner detector
implementations available on the web [62]. Of course, you can collect your own
images either with a pre-packaged stereo camera or with a pair of standard digital
cameras. The following programming exercises should be implemented in a language
of your choice.

1. Fundamental matrix with manual correspondences. Run a corner detector on
the image pair. Use a point-and-click GUI to manually label around 20 well-
distributed correspondences. Compute the fundamental matrix and plot the con-
jugate pair of epipolar lines on the images for each correspondence. Experiment
with different numbers and combinations of correspondences, using a minimum
of eight in the eight-point algorithm. Observe and comment on the sensitivity of
the epipolar lines with respect to the set of correspondences chosen.

2. Fundamental matrix estimation with outlier removal. Add 4 incorrect corner cor-
respondences to your list of 20 correct ones. Observe the effect on the computed
fundamental matrix and the associated (corrupted) epipolar lines. Augment your
implementation of fundamental matrix estimation with the RANSAC algorithm.
Use a graphical overlay on your images to show that RANSAC has correctly
identified the outliers, and verify that the fundamental matrix and its associated
epipolar lines can now be computed without the corrupting effect of the outliers.

3. Automatic feature correspondences. Implement a function to automaticallymatch
corners between two images according to the Sum of Squared Differences (SSD)
measure. Also, implement a function for the Normalized Cross-Correlation
(NCC) measure. Compare the matching results with test images of similar bright-
ness and also of different brightnesses.

4. Fundamental matrix from automatic correspondences. Use your fundamental
matrix computation (with RANSAC)with the automatic feature correspondences.
Determine the positions of the epipoles and, again, plot the epipolar lines.
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The following additional exercises require the use of a stereo rig, which could be a
pre-packaged stereo pair or a homemade rig with a pair of standard digital cameras.
The cameras should have a small amount of vergence to overlap their fields of view.

5. Calibration. Create your own calibration target by printing off a chessboard pat-
tern and pasting it to a flat piece of wood. Use a point-and-click GUI to semi-
automate the corner correspondences between the calibration target and a set
of captured calibration images. Implement a camera calibration procedure for a
stereo pair to determine the intrinsic and extrinsic parameters of the stereo rig.
If you have less time available, you may choose to use some of the calibration
libraries available on the web [11, 62].

6. Rectification. Compute an image warping (homography) to apply to each image
in the stereo image pair, such that conjugate epipolar lines are horizontal (parallel
to the x-axis) and have the same y-coordinate. Plot a set of epipolar lines to check
that this rectification is correct.

7. Dense stereomatching. Implement a function to perform local dense stereomatch-
ing between left and right rectified images, using NCC as the similarity measure,
and hence generate a disparity map for the stereo pair. Capture stereo images for
a selection of scenes with varying amounts of texture within them and at varying
distances from the cameras, and compare their disparity maps.

8. 3D reconstruction. Implement a function to perform a 3D reconstruction from
your disparity maps and camera calibration information. Use a graphics tool to
visualize the reconstructions. Comment on the performance of the reconstructions
for different scenes and for different distances from the stereo rig.
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