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Abstract. Obstacle avoidance is a major requirement for any techno-
logical aid aimed at helping partially sighted (TAPS) people to navigate
safely. In this paper, a stereo vision-based algorithm (Ground Plane Ob-
stacle Detection) is extended to detect small obstacles for TAPS using
RANSAC dynamic recalibration and Kalman Filtering. Obstacle detec-
tion and false alarm are investigated probabilistically. Furthermore, a
technique is developed to find objects by matching their edges with some
heuristic criteria. Experiments show that obstacle edges are extracted
much better with our dynamic recalibration approach and that objects
can be found successfully by the edge matching technique.

1 Introduction

The system we describe here provides part of an obstacle avoidance capability
for a TAPS. It will form a major part of the mobility function of a larger project,
ASMONC (Autonomous System for Mobility, Orientation, Navigation and Com-
munication) which aims to provide a full navigation and mobility capability for
partially sighted people. A major requirement for the vision system is to detect
small obstacles to help the user navigate safely along a path.

2 Ground Plane Obstacle Detection

Ground Plane Obstacle Detection (GPOD) using stereo disparity was first re-
ported by Sandini et al. [3] and subsequently refined by Mayhew et al. [10] and
by Li [7, 8]. GPOD is a feature-based stereo algorithm using a pair of cameras
to determine features which do not lie on the ground plane.

GPOD parameterises the ground plane using measurements of disparity and
includes an initial calibration stage in which the ground plane parameters are
extracted. GPOD works in image coordinates, and compares the disparity values
in a new image pair with the expected ground plane disparity to detect differ-
ences (hence obstacles). Vertical edges are detected using a Sobel detector, and
stereo matching uses the PMF algorithm [13, 14]. Images of the ground with line
features but no obstacles are used to initialise the ground plane estimate.

The ground plane disparity d varies linearly with cyclopean image plane
coordinates (u, v) [8], that is

d = au+ bv + c (1)

where (a, b, c) are the ground plane parameters.



3 Probability and False Alarms

In purely geometric terms, we can easily derive how many pixels are subtended
by an obstacle, however, noise makes obstacle detection a stochastic process and
geometry alone does not capture the stochastic element. Therefore, reliability is
inevitably expressed probabilistically [9].
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Fig. 1. The camera geometry showing the various parameters.

Disparity is given by d = f I
Y , where f is related to the camera intrinsic

parameters, I is the interocular distance, and Y is the distance to the object
or ground [5]. Referring to Figure 1, the quantity used in GPOD for checking
obstacles is the difference between the measured disparity at A and the predicted
disparity at B, which is
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The probability of detecting an obstacle of size S is the probability of its
disparity difference being larger than the threshold. Assuming that the disparity
difference is normally distributed, from Equation 2, we have
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We can illustrate this by analysing the case in which we want to detect an object
of height 10cm (e.g. a small step, sufficiently high to inconvenience a partially
sighted person) at a distance of 5m. With our known camera configuration and
parameters, this corresponds to a disparity difference of 1.7. In Equation 3, σ2

∆d

is the variance of the disparity difference given by

σ2
∆d = σ2

dmeasured
+ σ2

dexpected

where σ2
dmeasured

= 1 is assumed and σ2
dexpected

is given by the ground plane
parameters uncertainty analysis [16] assuming the image coordinates variances
are unity.



A vertical edge string of length m is regarded as an obstacle if at least
one pixel of the edge string is detected as an obstacle. Therefore, if pi is the
probability obtained in Equation 3 for the ith pixel, then assuming independence,
the probability of obstacle detection is 1−∏m

i=1(1− pi).
Figure 2 shows the probability of obstacle detection for different obstacle

sizes at various distances. We see that with our current configuration, to obtain
90% detection rate, the minimum obstacle size increases from 6cm to 11cm as
the distance increases from 2.5m to 5m.
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Fig. 2. Obstacle detection probability at various distances (threshold=1.7).

False alarm probability is the likelihood that an obstacle is detected when
nothing is actually there:

P (False Alarm) =
1√

2πσ∆d

∫ ∞
threshold

e
− (∆d−LSFE)2
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where LSFE is the least-squares fitting error, i.e. d(u,v)− (au+ bv+ c), in which
d(u,v) is the measured disparity for a ground plane point (u, v). Figure 3(a) shows
the false alarm rate for a typical obstacle-free scene when threshold is 1.7. It
indicates quite a high false alarm rate.

However, we can discard any single-pixel obstacles detected and not regard
them as false alarms, since it is highly likely that they are due to noise. Let pixel
(i − 1), pixel i and pixel (i + 1) be three consecutive pixels on a vertical edge,
and let Pi−1 be the probability of a false alarm for pixel (i−1), Pi that for pixel
i, and Pi+1 that for pixel (i + 1). Then, the false alarm probability (excluding
single-pixel obstacles) is given by Pi − (1− Pi−1)Pi(1− Pi+1).

Figure 3(b) shows the false alarm rate in this case which is reduced substan-
tially compared to Figure 3(a), as the chance of two consecutive points being
affected by noise in the same way is much lower. A real obstacle can reasonably
be expected to occupy at least a few contiguous pixels, so this simple heuristic
does not affect obstacle detection much.
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Fig. 3. False alarm probability for real ground plane data. (a) With threshold being
1.7. (b) With exclusion of single-pixel obstacles and threshold being 1.7.

4 RANSAC Dynamic Ground Plane Recalibration

For wheeled mobile robots moving over flat ground, there is no relative change
in position of the ground plane from the cameras, hence the cyclopean ground-
plane disparity function is fixed. However, cameras attached to the shoulders of
a partially sighted person in a TAPS move up and down while he/she is walking
around. The cameras move with six degrees of freedom. Therefore, a one-time,
fixed ground plane calibration cannot be used to detect small obstacles.

4.1 Dynamic Ground Plane Recalibration (DGPR)

We propose dynamic recalibration of the ground plane to prevent human move-
ment affecting obstacle detection and to obtain a better estimate of the ground
plane for slopes, hills or non-flat ground.

DGPR [15, 12] recalibrates the ground plane parameters at each step. Itera-
tively, it uses step k’s ground plane parameters for obstacle detection, partitions
the features found into ground plane features and obstacle features. The ground
plane features and the estimated camera movement between steps are then used
to obtain step k+1’s ground plane parameters.

4.2 Kalman Filter Tracking

In a multiple target tracking system, we confront the data association prob-
lem, which addresses how to associate predictions of target positions with actual
measurements. The Mahalanobis distance [17] quantifies the likelihood of a mea-
surement originating from a specific geometric feature.

The nearest-neighbour approach uses this distance metric to associate the
measurements to their closest geometric features. It may perform badly as the
closest measurements are not always correct [2]. Nevertheless, it is both compu-
tationally and conceptually simple, and is employed in our current work.



We use the Kalman Filter [1] to track ground plane features as well as ob-
stacle features. Their positions can be determined more accurately and, with
suitable track initiation and termination techniques, we can deal with situations
such as new features coming into the scene, existing features leaving the scene
and temporary occlusion.

In addition to tracking ground plane features, we use a further Kalman Filter
to track the ground plane parameters in order to better estimate them.

4.3 RANSAC Ground Plane Fitting

In DGPR, the six d.o.f. camera motion parameters are required for the prediction
of ground plane parameters for obstacle detection in the next frame. However,
they are difficult to obtain accurately [11], therefore, we use RANSAC [4] for
ground plane fitting in each frame.

RANSAC takes all the image features (provided that there are sufficiently
many ground plane features, and not all obstacle features lie on the same plane),
fits the ground plane features and discards the obstacle features as outliers.

A sequence of stereo images of a real outdoor scene was captured at 128x128
resolution. The environment is a tiled pavement with various obstacles. There
was some camera motion between the images with translations up to 20cm and
rotations up to 5 degrees, which cover the extreme case for human movement [6].

Figure 4(a) shows an image of the sequence where the white rectangle in-
dicates the window of interest. Results from GPOD and RANSAC-DGPR are
shown in Figures 4(b) and 4(c) respectively, where detected obstacle edges are
marked. It can be seen that obstacles are missed by GPOD but are detected by
RANSAC-DGPR, showing that using only the initial ground plane parameters
is insufficient to detect obstacles in the presence of camera motion, and that the
RANSAC-DGPR approach gives promising results. Detected obstacles in the
scene include a 10cm-high brick at 1.5m and a 15cm-high box at 3m.

5 Objects

So far, only obstacle edges have been detected, as edges are sometimes weak,
we cannot tell which pairs of vertical edges correspond to the sides of an object.
This makes it difficult to advise the partially sighted person how to avoid the
obstacles. An edge matching technique is developed using notions similar to
disparity constraints, intensity correlations and mutual admiration in stereo.

5.1 The Algorithm

Among the edges in the candidate edge list, for each pair of edges i and j,
compute a ‘score’ indicating the likelihood of them being the two sides of an
object (see the next section).

For edge i, find its partner by choosing an edge which gives a lowest score
among all the other edges. If there exist edges i and j (i 6= j) such that edge i
chooses edge j and edge j chooses edge i (mutual admiration), then edges i and
j are declared as a pair and removed from the candidate edge list.
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Fig. 4. Obstacle detection. (a) The original image. (b) Result from GPOD. (c) Result
from RANSAC-DGPR. (d) Edge matching on RANSAC-DGPR result.

Any score needs to be below a threshold, otherwise, the pair is not declared.
This is to allow cases where there does not exist a match for a certain edge.

Repeat until all possible pairs are picked out.

5.2 Scoring

For each prospective edge pair, we compute a score to determine how likely it is
that they are the two sides of a single object. This score consists of three factors:
disparity, position and intensity.

Normally, the two sides of an object should be at about the same distance
from the camera, therefore they should have similar disparities. Let the average
disparity of the two edges be d1 and d2 respectively, then we have Dfactor =
k1|d1− d2|.

There are three components to the position factor: u-direction, v-direction
and length.

Let u1 and u2 be the horizontal coordinates of the two edges under consider-
ation. We would like to eliminate the case of them being too close, in particular,
to avoid u1 = u2 as they could not be a pair in that case: we have a term
inversely proportional to |u1 − u2|. However, by itself this would bias towards
picking two edges as far away as possible which is contrary to the usual situation.
Therefore, we propose Pufactor = k2

|u1−u2| + k3|u1− u2|.
The midpoint of the two edges forming a pair should be at a similar distance.

Let v1 and v2 be the vertical coordinates of the midpoint of the two edges, we
propose Pvfactor = k4|v1− v2|.

The two edges forming a pair should be of similar length. Let l1 and l2 be
the lengths of the two edges, then we propose Plfactor = k5|l1− l2|.



Similarly, there are two components to the intensity factor.
If two edges are the sides of an object, the intensity to the left of one edge

(Il1) is in many cases similar to that on the right of the other (Ir2); the intensity
to the right of the one edge (Ir1) should also be similar to the intensity to the left
of the other edge (Il2). The same applies to both left and right images, indicated
by superscribing with l and r respectively. We propose

I1factor = k6(|I ll1 − I lr2|+ |I lr1 − I ll2|+ |Irl1 − Irr2|+ |Irr1 − Irl2|)
Moreover, we also need to check the intensity of a patch between the prospec-

tive pair against the average background intensity. Let G be the average intensity
of the whole image, assuming most of it is ground region with relatively little ob-
stacle clutter, then G is close to ground region intensity. We can use a 3x3 patch
between the two edges and find the average intensity Iav to compare against G.
For this reason, we propose I2factor = k7

|G−Iav| .
Finally, the factors are summed to give a score for the prospective pair under

consideration. The constants kis appearing in the factors are partly experimental
and are individually weighed according to their importance and stability under
noise. For example, since the Dfactor is important and stable to noise, it is given
a larger weight. On the other hand, we find that the image coordinates and pixel
length are susceptible to noise, hence have smaller weights. We also need to set
the threshold t above which a match is not declared.

5.3 Results
Sensitivity analysis shows that the following chosen parameters (k1 = 100, k2 =
500, k3 = 10, k4 = 10, k5 = 10, k6 = 1, k7 = 5000, t = 1000) give stable results.
Applying this to the result from Figure 4(c), we obtain Figure 4(d). Each object
block, whose two sides are paired, is indicated.

The result shows that the score function does provide sufficient discriminating
power for pairs to be matched in scenes without too much clutter. We can locate
the objects now which will enable effective navigation for the partially sighted.

6 Conclusions

We have extended the GPOD algorithm developed originally for mobile robots
to include dynamic recalibration of the ground plane, Kalman Filter tracking of
features and RANSAC ground plane fitting in successive images. The experimen-
tal results from our implementation show that RANSAC-DGPR can detect small
obstacles much better than GPOD in the presence of camera motion. Moreover,
we have investigated obstacle detection and false alarm in probabilistic terms
and demonstrated that objects can be found from matching their edges with
criteria based on heuristics.

There are, however, some assumptions made which require further investi-
gation and justification, such as the variances of the image coordinates. The
current DGPR implementation takes 1.5 seconds on the average to process a
pair of 128x128 images on an Ultra-Sparc machine. So before it can be actually
used by the partially sighted, we will need to achieve at least near real-time
speed by parallelisation and other optimisations.
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