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Abstract—This paper describes a multi-sensor appearance-
based place recognition system suitable for robotic mapping.
Unlike systems that extract features from visual imagery only,
here we apply the well known Bag-of-Words approach to features
extracted from both visual and range sensors. By applying this
technique to both sensor streams simultaneously we can overcome
the deficiencies of each individual sensor. We show that lidar-
based place recognition using a generative model learnt from
Variable Dimensional Local Shape Descriptors can be used to
perform place recognition regardless of lighting conditions or
large changes in orientation, including traversing loops back-
ward. Likewise, we are still able to exploit the feature rich place
recognition that visual systems provide. Using a pose verification
system we are able to effectively discard false positive loop
detections. We present experimental results that highlight the
strength of our approach and investigate alternative techniques
for combining the results from the individual sensor streams. The
multi-sensor approach enables the two sensors to complement
each other well in large urban and rural environments under
variable lighting conditions.

I. INTRODUCTION

In this paper we examine the problem of recognizing
previously visited places based on both visual and range sensor
data. This issue is essential to the large-scale Simultaneous
Localisation and Mapping (SLAM) problem. SLAM tech-
niques are subject to failure, especially over large areas, due
to linearization errors and improper data associations [1]. To
overcome these problems, appearance-based place recognition
can be used to decouple the loop closing process from the
geometric SLAM algorithm[2],[3],[4]. Here, the loop closing
process is essentially a scene recognition computer vision task.
In this way, loop recognition is not bound to the pose estimates
of the SLAM procedure and hence is not prone to failure
resulting from gross errors in the robot pose estimate.

State-of-the-art place recognition systems detect loop clo-
sures by measuring the similarity between features extracted
from the sensory data. Visual sensors are the predominant
sensing modality used as they exploit the feature rich nature
of their output. Visual features such as SIFT [5] and SURF [6]
work well under small variations in lighting and orientation,
but are prone to failure under large variations. Conversely, lidar
sensors are very robust to variations in lighting and orientation,
but rely on the presence of 3D structures in the scene. In this
work, we seek to combine the strengths of the two sensing
modalities to improve the robustness of the place recognition
system and create a system that can perform in both day and

night conditions. This is an essential element to autonomous
UGV operation when GPS availability is not guaranteed due
to occlusion or jamming.

Our essential approach is to perform visual and lidar place
recognition in parallel and then combine the results to achieve
better recognition. Current techniques that exploit both visual
and range data use the range data for verification purposes
only and do not perform recognition directly on the range data.
To perform recognition on range data, we extend the use of
traditional Bag-of-Words (BoW) techniques by incorporating a
shape descriptor called the Variable-Dimensional Local Shape
Descriptor (VD-LSD) [7]. This descriptor has been shown to
be highly distinctive, robust to orientation and is compact in
storage [8]. We examine different methods of combining the
visual and lidar-based place recognition results.

II. RELATED WORK

The use of visual features for place recognition has received
recent attention from the robotics community. Popular tech-
niques grew out of content-based image retrieval systems used
by popular search engines [9]. The basis of this approach
is the Bag-Of-Words (BoW) technique that clusters similar
features extracted from training imagery to form a vocabulary
of words representing the environment. New imagery can be
categorized by matching its features to the vocabulary. The
resulting appearance vector can be used to compare the image
to previously seen images to determine if the image is from a
new or previously visited place.

In [4], image similarity is defined as the normalized inner
product between the image appearance vectors. A similarity
matrix is constructed and used to search for repeated se-
quences. In GraphSLAM [1], the authors used a similar BoW
technique but were able to update their vocabulary as each new
image was processed rather than through off-line supervised
learning. FAB-MAP [3] learns a generative model for the BoW
data that captures the tendency of combinations of appear-
ance words to co-occur reflecting that they are generated by
common objects in the environment. By learning a Bayesian
model of these common objects in an unsupervised way,
FAB-MAP improves the inference mechanism by robustly
reasoning about which set of features are likely to appear
or disappear together. Probability distributions are efficiently
computed using Chow-Liu trees. To achieve an efficient large-
scale implementation, FAB-MAP 2.0 [10] uses an inverted



Fig. 1. The proposed system is a multi-sensor extension of the FAB-MAP algorithm. SIFT and Variable Dimensional Local Shape Descriptor features
are used to train a vocabulary for video and lidar sensors respectively. During run-time, features are extracted from real-time sensor data, converted to their
respective appearance vectors and used to detect loop closures. The outputs from the parallel loop detectors are then input to a validation and pose computation
algorithm before being integrated to generate a final loop detection.

index retrieval architecture that requires modification to the
way probabilities of revisits were computed and updated in
the original algorithm. FAB-MAP 2.0 has been demonstrated
on a large 1000km dataset with few false positive results.

Place recognition has also been applied to 3D range data.
In [11], the authors extracted Normal-Aligned Radial features
[12] from a range image and create a BoW vocabulary
from which similarities can be measured between scans. In
Magnusson et al. [2], the authors extract Normal Distribution
Transform (NDT) features from a point cloud and match a
global appearance descriptor derived from the NDT. In [13],
statistical and range histogram features are used as input to an
AdaBoost classifier.

Algorithms that use multiple sensors for place recognition
have also been proposed. In [14], the authors augmented video-
based FAB-MAP with 3D lidar data that was used to capture
the spatial distribution of visual words in the scene. Lidar data
was used to reject ambiguous loops but is not used to perform
the recognition. In [15], authors propose a place recognition
system that combines features extracted from both visible
and thermal imagery. Recognition is performed using FAB-
MAP. Results show an increased performance of the combined
system across a variety of lighting conditions.

III. SYSTEM OVERVIEW

The system presented here is a multi-sensor extension of
the FAB-MAP system described in [3], [10]. The system is
outlined in Figure 1. The algorithm is run in parallel for
both video-based FAB-MAP (using SIFT features) and range-
based FAB-MAP (using VD-LSD). Separate place recognition
results are generated from both sensor streams and integrated
to provide a final loop closure result.

The system consists of two phases, training and real-time
loop detection. In the training phase, representative sensor data
is input to the feature extraction algorithm. Bag-of-Words K-
means clustering is performed in the feature space to group
similar features and create the vocabulary. As the system is
sensor parallel, separate vocabularies are generated from the
range and video data.

During run-time new features are extracted from data, as
shown in Figure 2. A probabilistic detector model converts the
extracted features into an appearance vector that determines
which words are present in the current scene. For a vocabulary
of n words the associated appearance vector is denoted by
Zk = z1, . . . , zn, where the binary z value 1 indicates the
presence of the word in the current frame. The appearance
vectors are then fed to the scene recognition module where
the current scene is compared to previous scenes and a
loop is determined using a Bayesian model. The image with
the highest probability above a threshold is determined to
be a tentative loop closure. As before, scene recognition is
performed separately on each sensor stream.

If a tentative loop closure has been determined, the two
frames are then input to a validation and 6-DOF transform
computation module. If the detected loop is a true loop then a
valid transform can be computed and used to perform geomet-
ric loop closing. In the case of a false positive loop detection,
the 6-DOF module will detect the geometric inconsistency and
discard the loop hypothesis.

Once the results have been validated and a transform
between the two frames is calculated the outputs from the
two processing streams are combined. Two different strategies
discussed in section III-C are investigated to perform the multi-
sensor integration.



Fig. 2. Example of features extracted from a scene with buildings and parked vehicles from both video imagery (left) and range imagery (right). Note the
difference in scale and field of view for both sensors as well as the sparseness of the features in the range imagery compared with the video image.

A. Variable-Dimensional Local Shape Descriptor
As previously mentioned, the principal input to the range

place recognition algorithm is the Variable-Dimensional Local
Shape Descriptor described in Taati et al. [7]. The VD-LSD
has previously been used for model-based object recognition
and pose estimation of range data. Since this is a novel aspect
of this paper, we discuss it further here.

The VD-LSD for a salient point is generated from invariant
properties extracted from the Principal Component Space of
the local neighborhood. The 3x3 covariance matrix of the
local neighborhood around each point is computed and their
eigenvalue decomposition is used to associate an orthonormal
frame and the three eigenvalue scalars. Using these vectors
and scalars, seven positional, nine rotational and six dispersion
properties for all points can be generated to form a variety of
histograms that carry various levels of information about the
local geometry.

One distinguishing feature of the VD-LSD is that it offers
a generalized form that subsumes a large class of popular
descriptors in literature, such as Spin Images [16], Point Signa-
tures [17] and Tensor Correspondence [18]. These descriptors
lie in very small dimensional subspaces spanned by the at
most 22-dimensional VD-LSD. In taking such a maximalist
approach, VD-LSD captures local geometry of the range data
better and therefore achieves better robustness in the matching
phase.

Some of these properties might perform more robustly
than others. The descriptive power of these properties is not
equal and depends on the local geometries. Therefore, the
optimal property subset could be different for different models.
In applying VD-LSD to our place recognition application
consisting of a variety of real-world objects, the desired subset
of properties was empirically determined based on the trade-
off between the time required to compute these properties for
large point clouds and their robustness to place recognition.

The VD-LSD extraction algorithm is parallel and therefore
is highly suitable for Graphics Processing Unit (GPU) im-
plementation. Several processor-intensive modules have been

implemented in CUDA to run on NVIDIA GPU, to offload the
CPU. For this work, a total of six dimensions have been cho-
sen, including three positional and three dispersion properties.
The number of histogram bins along each dimension is set to
two, thereby producing descriptors of length 64. The number
of bins and which dimensions to use can be configured in the
software.

B. Validation and Transform Computation
After our system has identified a potential loop between

frames, a validation scheme is used to discard false positives.
For lidar data, the 3D VD-LSD for the two frames are
considered, whereas for visual imagery, the SIFT 3D features
are used as the system collects stereo imagery data.

A ratio test is first applied on the Euclidean distance
between the feature vectors for the best and second best
matches to discard ambiguous matches. Once a set of tentative
feature matches are obtained, a RANSAC approach [19] is
performed to remove the outliers. Three tentative feature
matches between the candidate frames are selected randomly
to compute the 6-DOF transform using the rigid body trans-
formation approach, to serve as a hypothesis. The number of
supporting feature matches from the tentative set are obtained
for each hypothesis. This process is performed repeatedly and
the hypothesis with the highest number of supporting feature
matches is selected. All the supporting feature matches are
used to compute the 6-DOF transform using a least-squares
minimization approach.

Since the transformation between frames is constrained by
vehicle geometry and ground vehicle motion, an additional
level of validation can be performed to discount for tentative
loops with large translations and excessive pitch and roll
between the candidate frames. After validation the final 6-DOF
transform and the loop hypothesis are sent to the integration
module.

C. Integration Schemes
Two different integration strategies, each with their own

strengths, were implemented for this work. The AND scheme



only outputs a loop closure if both sensors detect a loop
closure at the same location. In this case, the resulting 6-
DOF transformation will be the average of the transformations
computed separately from the lidar and range data. Conversely,
the OR scheme outputs a valid loop closure if either sensor de-
tects a loop. In the case where both processing streams detect
the closure the OR scheme chooses the loop hypothesis with
the higher probability and uses its associated transform. Both
strategies have their merits. With the AND scheme outputting
a final valid loop only if both sensors agree, the potential
for false positive loop closures is minimized. However, as
the visual image sensor relies on ambient lighting, the AND
scheme will not detect any loops in low light conditions, a
key goal of the system. Conversely, the OR scheme will detect
more loops, but may be more susceptible to false positives. It
will also detect loops during night operations, as lidar does
not require ambient lighting.

After successful detection, validation, and integration a valid
loop and its associated transformation can be used to close the
loop in a geometric SLAM formulation.

IV. EXPERIMENTAL RESULTS

This section presents results from field trials conducted over
a two week period at the DRDC Experimental Proving Ground
(EPG) at CFB Suffield, Alberta, Canada. Field trials were
concentrated on two separate environments on the EPG, a
representative urban environment with many buildings, vehi-
cles, pavements, etc. and a representative rural environment
containing prairie grass, gravel roads and a sparse population
of buildings. Trials consisted of manually driving the vehicle
for several kilometres while collecting sensor data (lidar,
stereo, and GPS) which was then processed offline to perform
place recognition. It should be noted that the entire system can
run online at around 1Hz, but we chose to process the data
offline for convenience purposes.

A. Hardware and System Configuration

All field trials were performed on a research variant of the
Multi-Agent Tactical Sentry (MATS) (Figure 3), a modified
Kawasaki Mule developed at DRDC Suffield. The platform
was retrofitted with a Velodyne HD lidar (360 degrees field-
of-view) and Point Grey XB3 stereo camera (45 degrees field-
of-view). Only left camera images are used as input to the
FAB-MAP engine, while SIFT features from the left and
right cameras are used in the pose verification and 6-DOF
transformation stages. Differential GPS data was collected
during trials and used for verification and display purposes
only and was not used by the place recognition algorithm.
All software was tested on a high performance server housed
on the MATS vehicle. The server included a 3.33GHz Hexa-
Core Intel Core i7 Extreme Processor, 12GB of memory and
a NVIDIA Geforce GTX 580 GPU used for feature detections
and descriptor calculation.

From experimental observation, visual features or lidar
features from the ground may confuse the loop detection.
Therefore, the VD-LSD extraction is configured to ignore

features from planar surfaces, to avoid VD-LSDs arising from
the ground. Similarly, the SIFT extraction is configured to
ignore the smallest-scale features, to avoid SIFT arising from
gravel on the ground.

Vocabularies were generated by subsampling data sets col-
lected from similar rural and urban environments. Represen-
tatives rural data was used to generated the rural vocabulary
while representative urban data was used to generate the urban
vocabulary.

Fig. 3. Research platform used to conduct the tests. The Velodyne lidar and
the Point Grey Research stereo camera housed on top of the vehicle were
used for all tests.

B. Rural Trials

In this trial, the vehicle traversed 5.1km of a large outdoor
environment, including several loops for portions of the trajec-
tory. Using the OR integration scheme with pose verification,
we obtain many true positives and no false positives. While
FAB-MAP sometimes reported false positives, they were cor-
rectly rejected by the pose verification step. Figure 4 shows
the trajectory of this trial, where the positional information
was provided by the GPS. The blue dots indicates no loop
detection, the red dot indicates successful loop detection, while
the green dot indicates a FAB-MAP loop detection that was
rejected by pose verification.

As 3D structure is sparse in the rural environment, a larger
proportion of the loop detections come from the imagery data.
However, Figure 5 shows a true positive loop where both
visual and lidar FAB-MAP detected a loop, while Figure 6
shows an example where visual FAB-MAP does not detect
a loop but lidar FAB-MAP does. This is likely due to the
large lighting variation in the images. With the multi-sensor
approach, the place recognition recall rate is improved over
using the individual sensors.

Figure 7 shows a successful lidar loop detection where the
vehicle traversed the loop in the opposite direction. Since the
stereo camera has a 45 degree Field of View (FOV), it could
not recognize the scene. But with the 360 degree FOV, the lidar
place recognition could correctly recognize the loop and also
provide a pose estimate of (X=1m, Y=-0.35m, Z=2.77m, Rx=-



Fig. 4. Trajectory for a rural trial: blue indicates no loop detection,
red indicates successful loop detection while green indicates loop detection
rejected by pose verification.

Fig. 5. A true positive in the rural environment where the place is recognized
by both visual and lidar. The image pair is shown in (a) and (b) while the
corresponding top-down view of the point cloud is shown in (c) and (d)
respectively.

4.7deg, Ry=-161.3deg, Rz=1.2deg). This shows the benefit of
using a 360 degrees FOV lidar or an omni-directional camera.

Figure 8 shows a false positive detection from video due
to the far field cloud pattern similarity. The loop is rejected
correctly by the pose verification process. It can be seen
visually that the scale is quite different, i.e. one image is taken
closer to the building than the other. The GPS distance between
these two frames is around 80 metres, thereby confirming that
this false positive is indeed rejected correctly. This scenario
occurs frequently in this data set as there is an abundance of

Fig. 6. A true positive in the rural environment where the loop is detected by
lidar only due to the large lighting variation. The image pair is shown in (a)
and (b) while the corresponding top-down view of the point cloud is shown
in (c) and (d) respectively.

Fig. 7. A true positive from lidar data when the vehicle traverses in the
opposite direction. It can be seen that the top-down view of the point cloud is
rotated around 180 degrees relatively to each other but resembles each other
well, while the images look quite different as they are looking at different
directions.

clouds in the visual imagery. In all cases, the pose verification
algorithm has discarded them correctly.

Using the AND integration scheme, the number of true
positives decreases as expected, as it requires video and lidar
to recognize at the same frame. Since our pose verification
is very effective in discarding false positives from FAB-MAP,
we already obtain zero false positives using the OR integration
scheme for this experiment. More details of the results are
shown in Table I.

C. Urban Trials

In this trial, the vehicle traversed a large path in an outdoor
environment (5.8km), including several loops for portions of
the trajectory. Using the OR integration scheme with the pose



Fig. 8. A false positive from imagery data due to the similar cloud pattern
but has been rejected by the pose verification process correctly.

TABLE I
TRUE POSITIVES AND FALSE POSITIVES FROM INDIVIDUAL SENSORS AND

FROM MULTI-SENSOR APPROACH USING THE TWO INTEGRATION
STRATEGIES FOR THE RURAL TRIAL.

Video Lidar OR AND
True Positives 60 33 86 7
False Positives 0 0 0 0

verification, we obtain many true positives and zero false
positives. While FAB-MAP sometimes reports false positives,
they have been correctly rejected by our pose verification step.
Figure 9 shows the trajectory of this trial, where positional
information is provided by the GPS1.

Fig. 9. Trajectory for an urban trial: blue indicates no loop detection,
red indicates successful loop detection while green indicates loop detection
rejected by pose verification.

Figures 10 and 11 shows some examples of true positives,
in which the top-down view of the point clouds show that
there are more 3D structures in the urban scene, which
would facilitate loop detection using lidar data. Using the OR
integration scheme, a total of 112 true positives have been

1A video showing the output from this trial has been included with the
submission

detected and the average GPS distance between the two frames
is 1.6m and all are within 6.5m, indicating that all the detected
loops are correct. More details of the results are shown in Table
II.

TABLE II
TRUE POSITIVES AND FALSE POSITIVES FROM INDIVIDUAL SENSORS AND

FROM MULTI-SENSOR APPROACH USING THE TWO INTEGRATION
STRATEGIES FOR THE URBAN TRIAL.

Video Lidar OR AND
True Positives 107 30 112 25
False Positives 0 0 0 0

Fig. 10. A true positive in the urban environment where the place is
recognized by both visual and lidar. The image pair is shown in (a) and
(b) while the corresponding top-down view of the point cloud is shown in (c)
and (d) respectively.

D. Variable Lighting Trials

In this trial we evaluate the effectiveness of the multi-sensor
approach for 24-hour vehicle operation. Over a 12 hour period
(0900-2100), the vehicle traversed the same loop of a rural
environment collecting data. Using the 1200 test set as the
initial loop we then processed each additional hourly dataset
as the second loop. By traversing the same loop we are able to
isolate the effect of illumination and easily calculate the recall
rate.

Figure 12 shows images at a similar location at different
times, i.e. 9am, 1pm, 5pm and 9pm, while Figure 13 shows
the corresponding lidar data. It can be seen that the imagery
varies considerably due to the illumination changes while the
lidar data is stable throughout the day.

Figure 14 shows the hourly place recognition recall rates for
video only, lidar only and both video and lidar. All recall rates
are at 100% precision (no false positives). As this is a rural
environment, the 3D structure is sparse, therefore, the recall
rate for lidar is not that high. The visual imagery recall rate
is much higher due to the feature-rich environment, however,
it varies significantly as the illumination changes during the



Fig. 11. Another true positive in the urban environment where the place is
recognized by both visual and lidar. The image pair is shown in (a) and (b)
while the corresponding top-down view of the point cloud is shown in (c)
and (d) respectively.

Fig. 12. Example image at a similar location at different times of the day: (a)
9am (b) 1pm (c) 5pm (d) 9pm. Note that the illumination changes significantly
throughout the 12-hour period.

day. When both the stereo and lidar data are used with the
OR integration scheme, it offers the best of both worlds. Under
favourable illumination, visual place recognition provides very
high recall rate. On the other hand, under adverse lighting
conditions, the system still provides an adequate recall rate
thanks to the lidar data.

V. DISCUSSION

For this work, the purpose of place recognition is to provide
the loop closure information for the geometric SLAM to
update its trajectory and map. False positives are highly
undesirable, as they will corrupt the SLAM map. On the other
hand, a low recall rate is acceptable, as there is no need to
correct the SLAM map per frame. At least one correct place
recognition is sufficient for each loop the vehicle traverses.
The experimental results show that the proposed multi-sensor
approach provides a sufficient recall rate throughout variable

Fig. 13. Example lidar at a similar location at different times of the day: (a)
9am (b) 1pm (c) 5pm (d) 9pm. Note that the lidar data is stable throughout
the 12-hour period, as it is not affected by ambient illumination.

Fig. 14. Recall rates during a 12-hour period for imagery only, lidar only
and for using both imagery and lidar together. It can be seen that imagery
recall rate is much higher but affected significantly by illumination, while the
lidar recall rate is lower but independent of ambient lighting condition.

lighting condition at 100% precision, i.e., without any false
positives, and hence is highly suitable for mobile robot SLAM
applications.

The final decision of a loop detection is based on a proba-
bility threshold. For all the experimental results shown above,
we use a high probability threshold (0.99) for FAB-MAP to
be considered for 6-DOF validation. A lower threshold could
be used which may lead to more loop detections, but may also
introduce false positives into the system and would increase
the 6-DOF computation of the system. Practically, a high
probability threshold was chosen to reduce the possibility of
false positives and reduce computation time of the system
such that it can run in real-time. With this high threshold,
we obtain zero false positives even with the OR integration



scheme and hence the AND integration scheme is not useful
for these experiments.

Future work includes more experimentation by varying this
threshold to determine the true positives and false positives
rates, in order to generate the ROC (Receiver Operating
Characteristics) curve to characterize its performance. The
benefit of using the AND integration scheme over the OR
integration scheme should be more apparent at a lower prob-
ability threshold.

Probability thresholding works well when sequential images
added to the database are significantly distinct. In the case
where two or more images from the same physical location
are used as input, FAB-MAP will miss these loop closures as
the probability distribution is essentially split between the two
images. Therefore, we plan to develop an automated keyframe
detection method, similar to [20], that measures similarity
between the input data and only process frames that are
sufficiently different for loop detection. This will not alleviate
the problem if a vehicle were continuously looping through
the same route. In this case, more sophisticated methods for
managing the database or detecting cyclical loops need to be
developed.

VI. CONCLUSION

This paper proposed a multi-sensor approach for
appearance-based mapping that exploits the inherent strengths
of both visual and lidar sensors. The purpose of this research
is to develop a place recognition system that can operate
effectively regardless of lighting conditions enabling 24-hour
vehicle operation. Experimental results from both urban
and rural environments show good recall rates with 100%
precision, and that the multi-sensor system was capable of
accurately detecting loops during a 12-hour period from dawn
to dusk.
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