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Abstract

Not all frames are equal – selecting a subset of discriminative frames from a video can improve performance at detecting and
recognizing human interactions. In this paper we present models for categorizing a video into one of a number of predefined
interactions or for detecting these interactions in a long video sequence. The models represent the interaction by a set of key
temporal moments and the spatial structures they entail. For instance: two people approaching each other, then extending their
hands before engaging in a “handshaking” interaction. Learning the model parameters requires only weak supervision in the form
of an overall label for the interaction. Experimental results on the UT-Interaction and VIRAT datasets verify the efficacy of these
structured models for human interactions.
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1. Introduction

We propose representations for the detection and recognition1

of interactions. We focus on surveillance video and analyze2

humans interacting with each other or with vehicles. Examples3

of events we examine include people embracing, shaking hands,4

or pushing each other, as well as people getting into a vehicle5

or closing a vehicle’s trunk.6

Detecting and recognizing these complex human activities7

is non-trivial. Successfully accomplishing these tasks requires8

robust and discriminative activity representations to handle oc-9

clusion, background clutter, and intra-class variation. While10

these challenges also exist in single person activity analysis,11

they are intensified for interactions. Furthermore, in surveil-12

lance applications, where events tend to be rare occurrences in13

a long video, we must have representations that can be used14

efficiently.15

To address the above challenges, we represent an interac-16

tion by first decomposing it into its constituent objects (human-17

human or human-object), and then establishing a series of “key”18

components based on them (Figures 1 and 2). These key-19

components are important spatio-temporal elements that are20

useful for discriminating interactions. They can be distinctive21

times in an interaction, such as the period over which a person22

opens a vehicle door. We specifically refer to such important23

temporal components as key-segments. We further use key-pose24

to refer to a distinctive pose taken by an individual person in-25

volved in an interaction. For instance, a key-pose could be the26

outstretched arms of a person performing a push.27

Our models describe interactions in terms of ordered key-28

components. They capture the temporal and spatial structures29

present in an interaction, and use them to extract the most rel-30

evant moments in a potentially long surveillance video. The31

spatio-temporal locations of these components are inferred in a 32

latent max-margin structural model framework. 33

Context has proven effective for activity recognition. As 34

Marszałek et al. [28] observed, identifying the objects involved 35

in the context of an activity improves performance. A number 36

of approaches (e.g. [15, 20, 23, 33]) examine the role of ob- 37

jects and their affordances in providing context for learning to 38

recognize actions. Our approach builds on this line of work. 39

We focus on surveillance video, where events are rare, and be- 40

yond the presence of contextual objects, spatio-temporal rela- 41

tions between the humans/objects are of primary importance. 42

We contribute a key-component decomposition method that ex- 43

plicitly accounts for the relations between the humans/objects 44

involved in an interaction. Further, we show that this approach 45

permits efficient detection in a surveillance video, focusing in- 46

ference on key times and locations where human interactions 47

are highly likely. 48

Moreover, our discrete key-component series capture infor- 49

mative cues of an interaction, and are consequently compact 50

and robust to noise and intra-class variation. They account for 51

both temporal ordering and dynamic spatial relations. For ex- 52

ample, we can account for spatial relationships between objects 53

by simply characterizing their distance statistics. Alternatively, 54

we can directly model the dynamics of relative distance over 55

time in the video sequence. 56

Structured models of interactions can be computationally in- 57

tensive. Our key-component model allows efficient candidate 58

generation and scoring by first detecting the relevant objects, 59

and then picking the pairs that are likely to contain an interac- 60

tion. 61

We emphasize the importance of leveraging different struc- 62

tural information for effective interaction representation. In 63
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Figure 1: Schematics of the key-segment model for interaction detection. Key-segments, enclosed by magenta outline, identify the most representative parts of the
interaction. Spatial relations are captured through low-level features derived from distance and relative movement.

Figure 2: Schematics of the key-pose model for interaction recognition. An
interaction is represented by a series of key-poses (enclosed by red or blue
bounding boxes) associated with the discriminative frames of the interaction.
Spatial distance, marked by yellow double-headed arrows, is explicitly modeled
over time.

contrast, a common approach is to aggregate appearance and64

motion cues across the whole interaction track, ignoring poten-65

tially informative temporal and spatial relations [40, 30]. While66

these globally constructed representations can successfully dis-67

tinguish a person jumping vs. a person walking, they are too68

simple to differentiate a person merely passing by a vehicle vs.69

a person getting in/out of it. The two share very similar ap-70

pearance and motion patterns and a clear distinction becomes71

possible with the help of structural considerations (e.g. relative72

object distance and movements).73

This paper extends our previous work [43]. We conduct74

extended experiments on efficient interaction detection and75

recognition, confirming the advantages of both object de-76

composition [43] and modeling of the temporal progression77

of key-components [29, 35] that are spatially related [43].78

More specifically our contributions are: 1) efficient localiza-79

tion of objects involved in an interaction while accounting for80

interaction-specific motion and appearance cues, and 2) mod-81

eling of chronologically ordered key-components in a max-82

margin framework that explicitly or implicitly incorporates ob-83

jects’ relative distance and/or movements.84

An overview of this paper is as follows. We review the re-85

lated literature in Section 2. We then outline our approach to in-86

teraction representation in Section 3 and subsequently provide a87

detailed description of our models for detection (Section 4) and88

recognition (Section 6). We present empirical evaluation on89

the efficacy of the proposed representations for each task sepa-90

rately in Sections 5 and 7. We conclude and highlight possible91

future directions in Section 8.92

2. Background 93

Activity understanding is a well-studied area of computer vi- 94

sion. To situate our research on detecting and recognizing inter- 95

actions, we first clarify the distinction between these two tasks. 96

We then highlight major trends in handling activity structures. 97

A more comprehensive review of the literature on activity un- 98

derstanding in computer vision can be found in recent survey 99

papers [48, 1, 34]. 100

2.1. Detection vs. Recognition 101

In a recognition problem, the goal is to determine the type 102

of an activity contained in an input video. That is, we im- 103

plicitly assume something happens in the video. On the other 104

hand, in detection we are concerned with finding the tempo- 105

ral and spatial location of an activity – crucially, with no prior 106

knowledge on whether or not the input video contains an activ- 107

ity. The detection problem is thus inherently more challenging 108

and computationally demanding as we should both classify the 109

activities vs. non-activities, and specify when and where they 110

occur. A feasible solution requires an efficient initial screening 111

to narrow down the search space. It is common to use tech- 112

niques such as background subtraction to segment regions of 113

video where objects are moving. An activity model is then ap- 114

plied to these regions in a sliding window fashion [17, 4]. The 115

main limitation of this approach is that the segmentation is not 116

informed by knowledge about the activities we are searching 117

for. Consequently, in the crowded scenes typically encountered 118

in realistic video footage, we end up searching through many 119

irrelevant regions. In our work on interaction detection, we in- 120

stead identify regions that contain people and objects within a 121

reasonable distance, and only search through these areas where 122

it is highly likely for interactions to occur. 123

2.2. Structures in Activity Representation 124

A differentiating aspect in approaches to activity understand- 125

ing is the incorporation of structural representations. There are 126

two major questions to guide our classification of the literature: 127

what sort of structures are deemed relevant, and how they are 128

included in the representation. In the following subsections we 129

review the four most significant classes of approach to model- 130

ing structures for detecting/recognizing activities. 131

2.2.1. No Structure 132

Typically, local low level features of appearance and/or mo- 133

tion over the entire video volume are aggregated in a histogram 134

representation. Therefore, neither temporal nor spatial structure 135
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is considered. For example, Schüldt et al. [40] extract motion136

patterns corresponding to “primitive events” and capture their137

relevant appearance and motion information as spatio-temporal138

jets. They cluster these local descriptors to construct a vocabu-139

lary of the primitive elements, which is then used to obtain Bag-140

of-Words (BoW) representations of videos. Similarly, Niebles141

et al. [30] identify spatially discriminative regions that undergo142

complex motions and characterize the regions with a gradient143

descriptor. They represent a video sequence as a collection of144

words of a vocabulary constructed based on these descriptors.145

The expressiveness of these BoW representations is limited as146

they discard potentially discriminative structural information.147

2.2.2. Spatial Structure148

Similar to part-based object representations in still images,149

the spatial configuration of “parts” can be modeled on top of150

low level appearance and/or motion features. Wang and Mori151

[47] propose a frame level hidden part model based on local152

motion features. They process a video sequence frame-by-153

frame using their model and carry out majority voting to iden-154

tify the video content. Tian et al. [42] developed a deformable155

part model that organizes discriminative parts over time based156

on their local appearance and motion captured by HOG3D fea-157

tures [21]. Although capturing spatial structure is sufficient for158

distinguishing activities consisting of parts with considerably159

different appearance, it fails to differentiate patterns with simi-160

lar parts in different temporal order.161

2.2.3. Temporal Structure162

Sequential. The temporal progression of an activity can be cap-163

tured by a series of hidden states inferred from appearance164

and/or motion observations. For example, Yamato et al. [50]165

develop a Hidden Markov Model (HMM) of an activity that ob-166

serves a sequence of appearance symbols over the video frames.167

Once tuned to a particular type of activity, the model assigns168

higher probabilities to a sequence of symbols that more closely169

match the learned activity. Lv and Nevatia [27] perform key170

pose matching with sequence alignment via Viterbi decoding.171

Tang et al. [41] extend HMMs to also model the duration of172

each state in the temporal evolution of activities. These models173

are robust to time shifts as well as time variance in the execution174

of activities. However, they lack information about the spatial175

structure. This spatial structure can be crucial for making deci-176

sions, for example understanding whether a motion comes from177

the upper or lower body, or whether two parts meet or miss each178

other in a relative motion.179

Local feature. Efforts have been made to enhance local fea-180

ture methods by including spatio-temporal structural relations.181

Ryoo and Aggarwal [38] develop a kernel for comparing spatio-182

temporal relationships between local features and show effec-183

tive classification in an SVM framework. Kovashka and Grau-184

man [24] consider higher-order relations between visual words,185

discriminatively selecting important spatial arrangements. Yao186

et al. [51] utilize a local feature-based voting procedure to rec-187

ognize actions. Yu et al. [52] propose an efficient recognition188

procedure using local features in a spatio-temporal kernelized 189

forest classifier. 190

Exemplar. The temporal composition of an activity can be 191

characterized by a series of templates on top of low level fea- 192

tures. The template series are sometimes very rigid with little 193

provision for variation in the length of an activity. For example, 194

Efros et al. [11] construct a motion descriptor on every frame 195

of a stabilized track and compute its cross-correlation matching 196

score with samples of an activity database. The best matched 197

sample represents the content of the track. Brendel and Todor- 198

ovic [4] propose a more flexible model that builds exemplars 199

by tracking regions with discriminative appearance and motion 200

patterns. A general limitation of the exemplar models of tem- 201

poral content is their insufficient generalization to samples that 202

are not close enough to any of the templates. 203

Key-component. An activity can be represented as a discrete 204

sequence of discriminative components based on appearance 205

and/or motion features. Niebles et al. [29] identify a sequence 206

of key components that are based on pooled HOG [7] and 207

HOF [8] features at interest points. Raptis and Sigal [35] de- 208

velop an even more compact representation by modeling frame 209

level key poses that are automatically constructed as a collec- 210

tion of poselets. These models are highly robust to noise and 211

intra-class variations. However, they do not exploit important 212

discriminative spatial relations that are particularly relevant to 213

interactions. 214

2.2.4. Temporal and Spatial 215

Leveraging both the temporal and spatial composition of ac- 216

tivities gives models additional expressive power. Intille and 217

Bobick [16] manually identify “atomic” elements of an activ- 218

ity and specify temporal and spatial relations among them to 219

represent activities, such as a football play, that involve several 220

people interacting with each other. Vahdat et al. [43] present a 221

key-pose sequence model that automatically determines the in- 222

formative body poses of people participating in an interaction 223

while accounting for the temporal ordering of poses as well as 224

their spatial relations and the roles people assume in the inter- 225

action. Methods have been developed that model sophisticated 226

spatio-temporal relations between multiple actors / objects in a 227

scene [2, 6, 25, 18]. In this paper we instead focus on mod- 228

els capturing detailed information about a pair of objects inter- 229

acting in surveillance environments that lack the strong scene- 230

context relationships that provide much of the benefit for the 231

multi-actor models. 232

3. Analyzing Human Interactions 233

Given a surveillance video, our goal is to automatically de- 234

tect/recognize activities that involve people interacting with ob- 235

jects or with other people. The overall flow of our approach 236

is to first detect and track objects (people and/or vehicles). 237

We then determine which object pairs are likely involved in 238

an interaction. We apply more detailed models to these pairs 239
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(a) Shaking hands (b) Hugging

Figure 3: People’s relative distance changes depending on the type of inter-
action they participate in. People hugging each other are closer than people
shaking hands.

(a) No interaction (b) Getting into a vehicle

Figure 4: People are close enough to reach the objects they are interacting with.

to find interactions. The initial screening enhances the over-240

all efficiency as it considerably diminishes the search space.241

We develop methods for analyzing key-segments and key-poses242

within these pairs of tracks. Depending on the level of visual243

detail and interaction category granularity, the key-segment or244

more detailed key-pose model can be deployed.245

An important aspect of our model is the selection of discrim-246

inative parts of a track. Given tracks of people and objects,247

we model their interaction as a series of locally discriminative248

components. We consider these components as latent variables249

in our model and infer them based on objects’ appearance and250

their interrelations.251

More specifically, we note that the objects involved in an in-252

teraction have discriminative relative distance and movement253

patterns. For example, two people’s spatial distance when shak-254

ing hands is different from their proximity when hugging each255

other. Similarly, a person interacting with an object, such as256

a vehicle, is close enough to reach the object – a condition not257

necessarily true when there is no interaction going on (Figures 3258

and 4). Moreover, people’s movements with respect to an ob-259

ject are relevant. When a person gets into a car, her/his move-260

ments are toward the vehicle, while getting out of a car largely261

involves movements away from it (Figure 5). In subsequent262

sections we provide the details of our feature representations.263

In the most naive approach, it is possible to feed appearance264

and relative distance/movement features pooled over an entire265

interaction track into a classifier (e.g. an SVM). However, this266

confounds relevant and irrelevant features of the track. Addi-267

tionally, almost all informative structural information is washed268

out in this global representation. Instead, we leverage spatial269

and temporal structures and represent an interaction in terms of270

(a) Getting out of a vehicle

(b) Getting into a vehicle

Figure 5: Relative movements of people and objects can distinguish between
different interactions.

its most discriminative parts. By incorporating the most perti- 271

nent information, our representation can handle intra-class vari- 272

ation due to differences in the execution of the same interaction. 273

For example, it is sufficient to find two nearby people with arms 274

first alongside their bodies at one point in time and then concur- 275

rently extended toward each other at another point to reliably 276

identify that they are shaking hands. Neither occlusion/clutter 277

present at any other point, nor the time duration of reaching the 278

other’s hand and shaking it impacts this representation. 279

We introduce two such representations in Sections 4 and 6. 280

Briefly, we develop a key-segment model for interaction detec- 281

tion and key-pose model for interaction recognition. Following 282

the insight explained above, both models look for “key” tempo- 283

ral and spatial structural components. In dealing with the chal- 284

lenging task of interaction detection in long videos, the key- 285

segment model finds the temporally discriminative sequences 286

of frames, the key-segments, in a video over time. On the 287

other hand, the more complex key-pose representation explic- 288

itly specifies how objects are located in time and space in a 289

given track containing a type of interaction. Its enhanced ex- 290

pressive power thus allows it to tell different interactions apart. 291

4. Interaction Detection: Key-Segment Model 292

Our approach to interaction detection consists of two ma- 293

jor steps (Figure 6). We first coarsely localize objects, in time 294

and space, using off-the-shelf detection and tracking methods. 295

We then use a discriminative max-margin key-segment model 296

to more closely examine if a particular set of objects contains 297

an interaction of interest. The timings of the most informative 298

parts of an interaction track, the key-segments, are considered as 299

latent variables in our model. The model therefore encodes the 300

most relevant appearance features and spatial relations in a tem- 301

poral context. With this two-stage approach we can efficiently 302

process large volumes of video to narrow our search, expend- 303

ing more expensive computations only on a subset that is likely 304

to contain an interaction. This advantage is particularly of in- 305

terest in surveillance applications where very few interactions 306

happen in a long stream of video. In the following subsections 307

we describe the above steps in more detail. 308
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Figure 6: Overview of interaction detection system. There are two major steps:
1) we efficiently but coarsely localize potential interactions in time and space, 2)
we more closely examine the content of these space-time volumes to determine
if they contain interactions.

4.1. Coarse Localization309

We use available object detectors to obtain bounding boxes310

of objects at the rate of three frames per second. We set the311

detection threshold low to ensure as few potential candidate in-312

teractions as possible are lost; there is no way to find an inter-313

action past this stage if one of the objects involved in it is not314

retrieved. This comes at the cost of a larger false positive rate315

which we mitigate by filtering out detections that are unreason-316

ably large and fall in a region where interactions are less likely317

to occur. We assume access to scene homography and regions318

of interest that are typically available in surveillance applica-319

tions. However, automatic discovery of such regions in a given320

setup is possible as demonstrated in [49].321

We use the above object detections to initialize a tracker that322

follows the object for a fixed duration forward and backward in323

time. The length of a track, L, is set to be at least twice as long324

as the average length of an interaction. The tracks centered at325

the initial detections provide a coarse localization of objects for326

further analysis where we build potential interaction tracks, the327

so called candidates, by pairing the object tracks.328

4.2. Key-Segment Model Formulation329

When analyzing a track of a person nearby a vehicle, we can330

not only use a global description of the entire track, but also331

focus our attention on specific time instances. For example, im-332

portant key-segments can include frames portraying the person333

first bent within the door frame and then moving away from the334

vehicle. Together with global descriptions of the tracks, these335

can lead us to infer that the person is getting out of the vehicle.336

Our key-segment model formalizes this (Figure 7). We treat337

the temporal location of the important portions of an interac-338

tion track, the key-segments, as latent variables and infer their339

timing by evaluating all the possible ordered arrangements of340

the segments: we assign each arrangement a score and pick the341

one with the highest score as representative of the interaction.342

For a (tentatively) localized track C and an arrangement of its343

K segments S = {si < si+1; i = 1, 2, . . . ,K − 1}, we define the344

following scoring function to evaluate the arrangement:345

fW,Wg (C, S ) =

K∑
i=1

wT
i φ(C, si) + WT

g φg(C), (1)

Figure 7: Graphical representation of key-segment model. We score S = {si <
si+1; i = 1, 2, . . . ,K−1}, the arrangement of segments shaded in gray, on a (ten-
tatively) localized track C. The model parameters W = [w1,w2, . . . ,wK ] and Wg
are adjusted such that the score fW,Wg (C, S ) is maximized for the arrangement
of key-segments.

where the model parameters W = [w1,w2, . . . ,wK] and Wg 346

are adjusted such that the more representative the segment ar- 347

rangement within the track, the higher the score it is assigned. 348

Feature functions φ(·, ·) and φg(·) encode the relevant spatio- 349

temporal information across each segment and entire track re- 350

spectively. In our work, we use appearance features and spa- 351

tial dynamics: densely sampled HOG3D, center-to-center Eu- 352

clidean distance of object bounding boxes, and the inner angle 353

of the relative object movement vectors. A detailed description 354

of the features appears below. 355

Given the above scoring scheme, the arrangement of key- 356

segments within a track is: 357

S ∗ = arg max
S∈U

fW,Wg (C, S ), (2)

where U is the set of all possible arrangements of segments in 358

C. In the present work, we only considered segments of fixed 359

length l. Therefore, the ith segment spans a window at frames 360

[si, si + l − 1] of the track. 361

4.3. Features 362

To capture the appearance, motion, and spatial relations of 363

interacting people and vehicles we use HOG3D, distance, and 364

joint direction and distance features. These are computed as 365

follows. 366

HOG3D. We construct the HOG3D representation of a human- 367

vehicle interaction by concatenating HOG3D features [21] of 368

the human and the vehicle participating in the interaction. 369

We densely sample the regions of video spanned by the hu- 370

man/vehicle bounding boxes in time and space and construct a 371

BoW histogram representation of an entire object track (global 372

representation), or segments of it (Figure 8a). The X (horizon- 373

tal) and Y (vertical) stride width of dense sampling are equal 374

and scene-dependent. They are set such that at least four hori- 375

zontal and vertical strides cover a bounding box. Overlapping 376

temporal strides have a width of 10 frames and cover each other 377

by five frames. The histograms of the human and vehicle each 378

have 1000 bins associated with visual words, obtained from K- 379

Means clustering [12] of densely sampled HOG3D features of 380

ground truth object tracks. Both human and vehicle BoW fea- 381

tures are normalized so their L1 norm is 1. A kd-tree structure 382

by [44] speeds up visual word look-up when constructing the 383

histograms. 384
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(a) HOG3D (b) Distance (c) Joint direction and
distance

Figure 8: The construction of appearance as well as the relative distance and
direction features on the VIRAT dataset [31]. MX, MY, and MT in (a) are the
width of spatial and temporal strides for HOG3D feature extraction.

Distance. For a pair of human and vehicle bounding boxes385

on a given frame we compute the Euclidean distance between386

their centers in world coordinates using homography informa-387

tion (Figure 8b). We then pool the distance measurements over388

the entire interaction track or segments of it to construct a four-389

bin histogram. The bins are associated with very close, close,390

far, and very far distance values, quantified by clustering the391

measurements on ground truth interaction tracks. We use the392

soft-assignment scheme of [32] to construct the histograms and393

carry out L1-normalization to get the final distance feature vec-394

tor.395

Joint Direction and Distance. The angle between the person396

motion vector and the vector connecting the centers of the per-397

son and vehicle bounding boxes is indicative of the person’s398

movements with respect to the vehicle (Figure 8c). If a person399

is about to interact with a vehicle, s/he is likely moving toward400

the vehicle and not away from it. However, several back and401

forth movements may occur during the interaction. To capture402

this, we jointly construct a direction and distance histogram403

with four bins for each quantity (a total of 4x4 = 16 bins).404

The direction bins are [-90◦, 11.25◦, 90◦, 168.75◦] and encode405

no motion, moving toward, moving along, and moving away406

from the vehicle. We use the distance bins quantified above407

for computations. As before, we perform soft-assignment and408

L1-normalization to construct the feature vector.409

4.4. Learning410

We adjust the model parameters in the SVM framework by411

solving the following constrained optimization problem for N412

training tracks {C1,C2, · · · ,CN} labeled {y1, y2, · · · , yN} respec-413

tively where yi ∈ {1,−1}; we do not have annotations for key-414

segments and infer their value during the training:415

min
W,Wg,ξi

λ

2
(WT W + WT

g Wg) +

N∑
i=1

ξi,

s.t. ∀i yi max
S∈U

fW,Wg (Ci, S ) ≥ 1 − ξi, ξi ≥ 0. (3)

Combining the two constraints of Equation 3 into one as ξi ≥416

max{0, 1 − yi maxS∈U fW,Wg (Ci, S )}, we can write:417

min
W,Wg,ξi

λ

2
(WT W + WT

g Wg) +

N∑
i=1

max{0, 1 − yi max
S∈U

fW,Wg (Ci, S )}. (4)

In general, the objective function in Equation 4 is non- 418

convex. However, it is always convex for the negative samples 419

and convex for the positive ones given a fixed assignment of the 420

latent variables. Therefore, it is possible to iteratively optimize 421

the objective by first inferring the latent variable for a set of pa- 422

rameters, and then optimizing the parameters once the variables 423

are inferred as in [14]. 424

We use the discriminative pre-training trick to simplify the 425

optimization and initialize model parameters to those of an 426

SVM model [9]. We use the NRBM optimization package [10] 427

to solve Equation 4. 428

4.5. Inference 429

For track C and interaction model parameters (W,Wg) we 430

would like to find a strictly increasing assignment for latent 431

variables S ∗ = {si < si+1; i = 1, 2, . . . ,K − 1} that has the max- 432

imum score fW,Wg (C, S ) among all the possible assignments S . 433

Given the ordering constraint, we can formulate the inference 434

as a dynamic programming problem. 435

We define F(m, t) to be the optimal value of fW,Wg (C, Ŝ ) 436

where Ŝ = {si < si+1; i = 1, 2, . . . ,m − 1} and sm is located 437

on the tth frame (m ≤ K and t ≤ L). We can subsequently define 438

the following recursive relations: 439

F(1, t) = wT
1 φ(C, t), (5)

F(m, t) = max
m−1≤ j<t

{F(m − 1, j) + wT
mφ(C, t)}. (6)

The best assignment score is given by maxK6t<L F(K, t) and 440

S ∗ can be retrieved by backtracking. The time complexity of 441

this process is O(KL), i.e. linear in track length L for a fixed 442

choice of K. 443

5. Evaluation of Key-Segment Model 444

We evaluate the key-segment model for interaction detec- 445

tion on the VIRAT Ground Dataset Release 2.0 [31]. VIRAT 446

contains varied interactions in relatively longer videos of wide 447

scenes and is therefore appropriate for detection performance 448

analysis. In the following subsections we describe the data, fea- 449

tures, and the experimental setup in detail. 450

5.1. VIRAT Ground Release 2.0 451

The dataset contains 8.61 hours of high-definition fixed- 452

camera surveillance videos portraying people naturally per- 453

forming activities in real environments (e.g. parking lots, con- 454

struction sites, walkways). There is a total of 11 scenes that sig- 455

nificantly vary in terms of lighting condition, camera viewpoint, 456

and human height in pixels. Detailed annotations are available 457
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at both event and object levels for 12 different activities, in-458

cluding six human-vehicle interactions: loading/unloading an459

object to/from a vehicle, opening/closing a vehicle’s trunk, get-460

ting in/out of a vehicle. Instances of these events occur in a wide461

spatial range and are temporally scattered. The official release462

documentation [19] identifies two training-testing schemes: 1)463

scene-independent: training is carried out on a subset of scenes464

while testing happens on another mutually exclusive subset. 2)465

scene-dependent: training and testing samples come from the466

same set of scenes and thus scene-specific regularities learned467

during training are helpful at the test time.468

We use videos in 10 (out of 11) scenes that are relevant to469

the task of human-vehicle interaction detection (Table 1) —470

the only scene we dropped (0100) captures a building facility471

where no interaction of interest can occur. We follow a scene-472

independent setting for evaluations [19], and to the best of our473

knowledge there are not comparable previously published re-474

sults that use the same setting. Zhu et al. [54] achieve state-of-475

the-art results on a subset of the dataset in the scene-dependent476

setup, but comparison is difficult without the details of the ex-477

perimental setup and feature computation. In the experiments478

reported here, the training scenes are 0101, 0400, 0401, 0502479

and comprise 3.43 hours of video. There are a total of 167 cor-480

rectly annotated interactions in these scenes (Table 1).481

5.2. Experiments482

Next, we describe the experiments we conducted to verify483

our choice of features and to evaluate the efficacy of our pro-484

posed interaction localization and representation.485

5.2.1. Evaluation of Features486

We start by using the ground truth tracks from the dataset487

to evaluate if the proposed features adequately capture the rel-488

evant information for detecting interactions. We acknowledge489

that the features we evaluate in this error-reduced setting may490

not be ideal in other more realistic settings (e.g. that of 5.2.2),491

and emphasize that our concern here is how well these features492

capture the underlying patterns of an interaction.493

We construct global BoW representations of HOG3D,494

HOG3D + Distance, and HOG3D + Distance + joint Direc-495

tion and Distance features to represent ground truth tracks. We496

use approximate Histogram Intersection kernel expansion [45]497

and train a linear SVM model on the expanded features. Any498

instance of the six interaction classes is considered a positive499

sample. Pairs of humans and vehicles that do not interact but500

are spatially close to each other are considered as negative sam-501

ples. We compiled 145 such pairs for training (See Table 1).502

Figure 9 depicts the precision-recall performance of each503

model, illustrating the importance of features capturing the504

inter-relations of objects. While all three feature settings per-505

form better than chance, the inclusion of distance features dra-506

matically improves the performance. The overlapping infor-507

mation that joint direction and distance features bring provides508

additional discriminative power. See Table 2 for a summary of509

quantitative measurements.510

Figure 9: Feature evaluation experiments on VIRAT Ground Release 2.0:
Precision-Recall Curves of models trained on appearance (HOG3D), appear-
ance & relative distance (HOG3D+dist), and appearance & relative distance &
direction (HOG3D+Dist+DDir) features in red, blue, and green respectively.

5.2.2. Key-Segment Model for Detection 511

We examine our key-segment interaction model in two dif- 512

ferent settings. We first show the effectiveness of considering 513

more discriminative segments of an interaction track by com- 514

paring the key-segment model against a global BoW + SVM 515

model on ground truth interaction tracks. We then detect inter- 516

actions based on automatically generated tracks. 517

Ideal Interaction Tracks. We use the best performing feature 518

representation of 5.2.1 (i.e. HOG3D + Distance + joint Direc- 519

tion and Distance) within the training-test split summarized in 520

Table 1. We train both global BoW + SVM and key-segment 521

models and compare their scores. The key-segment model in 522

the following experiments works with a single latent variable 523

(K = 1) and segment length of 20 frames (l = 20). As 524

demonstrated in Figure 10, the key-segment model significantly 525

improves detection performance, confirming the insight that 526

examining more discriminative portions of a track is helpful. 527

While the global BoW + SVM model uses the same features, it 528

does not pick the most relevant information; it considers both 529

relevant and irrelevant cues. However, the key-segment model 530

selects the most informative signals to score a track. 531

Automatically Generated Interaction Tracks. We use human 532

and vehicle detectors Felzenszwalb et al. [14] trained on the 533

PASCAL VOC2009 dataset and tune them to VIRAT by addi- 534

tionally training a kernelized SVM classifier based on HOG3D 535

BoW features densely sampled in detection bounding boxes. 536

We filter out low scoring detections from further analysis. We 537

use [5] to train the SVM classifier. 538

We use the human detections to initialize the MIL tracker 539

Babenko et al. [3] developed and track them in a time window 540

spanning 200 frames before and after the detection frame (i.e. L 541

= 2× 200 = 400). We do not explicitly track vehicle detections. 542

Since in these human-vehicle interactions the vehicle does not 543

move, we copy the vehicle detection in its place to get its track. 544

Any pair of coarsely localized human and vehicle tracks that 545

are close enough to each other in time and space is a candidate 546

interaction. We use interaction models trained on ground truth 547
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Scene # 0000 0001 0002 0101* 0102 0400* 0401* 0500 0502* 0503 total
Number of Videos 5 2 39 46 76 28 17 14 30 14 329
Length of Videos (h) 0.8 0.46 1.42 0.74 1 1.29 0.54 0.24 0.86 0.4 7.75
(1) Loading objects 2 0 1 0 0 6 5 0 3 0 17
(2) Unloading objects 8 4 3 0 0 19 18 2 4 0 58
(3) Opening trunk 8 2 8 6 0 9 3 0 3 0 39
(4) Closing trunk 9 2 8 6 0 7 2 0 3 0 37
(5) Getting in 16 3 21 9 1 9 3 1 25 6 94
(6) Getting out 14 4 33 0 0 6 6 1 15 2 81
All Interactions 57 15 74 21 1 56 37 4 53 8 326
Background 0 1 22 75 11 31 36 32 3 84 295

Table 1: Statistics of VIRAT Ground Dataset Release 2.0 data. Training scenes are marked by *. Interaction samples have been obtained by cross referencing valid
entries of mapping files in objects files and visually inspecting the tracks to verify their content. Background samples are pairs of spatially close people and vehicles
not involved in an interaction. We have randomly picked a subset of size 295 out of these pairs for our experiments.

Figure 10: Interaction detection experiment on ideal tracks of VIRAT Ground
Release 2.0: Precision-Recall Curves of BoW+SVM (red) and key-segment
(blue) models both trained on appearance & relative distance & direction
(HOG3D+Dist+DDir) features extracted from ground truth person and vehi-
cle tracks.

data (i.e. the two models from 5.2.2) and score how well these548

candidates represent an interaction. Following [19]’s evaluation549

methodology, we consider candidates whose temporal and spa-550

tial intersection over union overlap with a ground truth sample551

is larger than 10% as a correct detection.552

In Figure 11, we report the performance of the scheme de-553

scribed above for videos in scenes 0000 and 0001, where the554

height of the humans in the scene is large enough for the detec-555

tion models to work reasonably well. Figure 12 shows sample556

key-segment model outputs.557

Analysis. The key-segment model significantly outperforms558

the global BoW model by incorporating structural information.559

A comparison of key-segment and global BoW performance in560

the two evaluation settings, one involving ground truth tracks561

and the other involving automatically generated tracks, reveals562

the importance of selecting the most informative cues. For563

ground-truth tracks, the key-segment model achieves ∼2% ad-564

ditional improvement over global BoW; for automated tracks it565

increases average precision by ∼17%.566

Inspecting the top scored samples, we see that the key-567

segment model usually favors the moments when the person568

Figure 11: Interaction detection experiment on automatically generated tracks
in VIRAT Ground Release 2.0: Precision-Recall Curves of BoW+SVM (red)
and key-segment (blue) models applied to automatically generated tracks of
people and vehicles based on their appearance & relative distance & direction
(HOG3D+Dist+DDir) features.

makes a move with respect to the vehicle; a reasonable cue of an 569

imminent interaction. Additionally examining the top ranked 570

false positives reveals some of the difficulties in working within 571

the limited settings that VIRAT dataset offers. For example, 572

Figure 12b displays a person moving toward the vehicle and 573

bending over the window. Such an event can be considered as 574

an interaction, although it is not specified as one and so there is 575

no label for it. Also, there are lost interactions as in Figure 12d, 576

where the annotations are not available for an occurrence of the 577

already defined interaction. 578

The performance is heavily dependent on the quality of the 579

interaction tracks built on top of the object tracks. Developing 580

robust detection and tracking for the diverse VIRAT videos is 581

a challenge, and we are not aware of published results with ef- 582

fective methods (e.g. based on moving region detection or per- 583

son/vehicle detectors) that are effective. However, our results 584

on ground-truth tracks show that the features and model we 585

propose are effective. We provide evidence that with improved 586

detection and tracking modules, the overall system could ob- 587

tain results closer to average precision of 93.03% obtained 588

by ground-truth tracking. Further, more detailed models with 589

K > 1 can be applied in finer-grained settings with more reli- 590
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Model AUC AP
Trained and Tested on Ground Truth Tracks
HOG3D BoW + SVM 80.16% 80.57%
HOG3D+Dist BoW + SVM 90.88% 90.92%
HOG3D+Dist+DDir BoW + SVM 91.37% 91.40%
HOG3D+Dist+DDir + key-seg 93.01% 93.03%
Automatically Generated Tracks
HOG3D+Dist+DDir BoW + SVM 5.97% 6.63%
HOG3D+Dist+DDir key-seg 23.36% 23.78%

Table 2: Results of interaction detection on VIRAT Ground Release 2.0. AUC:
area under Precision-Recall curve, AP: average precision. HOG3D: appearance
feature, Dist: distance feature, DDir: joint direction and distance feature.

able detection and tracking. In the next section we explore more591

detailed models in the context of human-human interactions.592

6. Interaction Recognition: Key-Pose Model593

In our approach to recognizing human interactions, we are594

looking for descriptive and infrequent moments in (tentative)595

tracks of people. To this end, we use a discriminative max-596

margin key-pose model to identify the most informative frames597

of person tracks, the so-called key-poses. We characterize the598

key poses by their role, timing, location, and appearance. This599

information is encoded as latent variables in our model. More-600

over, we account for the spatial arrangements of the key-poses601

over time. Our model thus considers the relevant frames of a602

track only and ignores the misleading and highly variable ones.603

Its expressive power is also improved by explicitly encoding the604

spatial structure of people participating in the interaction. In the605

following section we formally describe the key-pose model for606

human-human interaction recognition.607

6.1. Model Formulation608

Observing two people, one approaching the other with his609

hand extended in an offensive pose and the other defensively610

stepping back shortly after, leads us to infer that an agres-611

sive act, for instance one person punching another, is taking612

place. We formalize this with our key-pose model. Given a613

pair of person tracks we represent their interaction by two series614

of chronologically ordered inter-related key-poses (one for the615

subject and the other for the object of the interaction) that are616

discriminative in appearance and spatial structure. We consider617

as latent variables the role (subject vs. object), timing, location,618

and specifics of appearance of these key-poses, and infer them619

by evaluating all the valid combinations of these variables. The620

evaluation is based on a score we assign to a set of values for621

latent variables and quantifies how well it encodes the underly-622

ing interaction; the highest scored combination represents the623

interaction. Below, we describe these variables and our scoring624

function in more detail.625

6.1.1. Latent Variables626

A key-pose is identified by its role, timing, location, and ap-627

pearance to capture the following information:628

• Role (r): whether the sequence containing the key-pose is 629

the subject or the object of the interaction. 630

• Timing (t): when in a tentative track of the person the key- 631

pose occurs. Chronological order is enforced among key- 632

poses of a sequence. 633

• Location (s): where in the space around the tentative track 634

of the person the key-pose is located. That is, s varies 635

in a vicinity of a tracker’s output that roughly estimates 636

where people are in a video and allows us to handle modest 637

tracking errors. 638

• Appearance (e): how the key-pose looks. For example, 639

does it look like a punch in the face or a punch in the 640

armpit? e is selected from a discrete set of exemplars, E, 641

containing possible appearance variants of key-poses. We 642

separately construct E; see 7.2 for details. 643

Formally, we aggregate this information in a single variable 644

h = [r, t, s, e]. We can thus encode a sequence of K key-poses 645

by H = [h1, h2, . . . , hK] where hi is the ith key-pose. ri’s take a 646

single value in all the key-poses of one sequence, i.e. ∀i, ri = 647

r1 and r1 is either subject or object. In the present work, we 648

assume there is a fixed number of key-poses in any sequence. 649

6.1.2. Scoring Function 650

For tentative tracks C1 and C2 of two people and an arrange- 651

ment of their key-poses H1 and H2 we define the following 652

scoring function: 653

fWs,Wo,Wd (C1,C2, y,H1,H2) = PW(r1
1)(C

1, y,H1) +

PW(r2
1)(C

2, y,H2) +

QWd (C1,C2, y,H1,H2), (7)

to evaluate how representative the key-pose series are for an ac- 654

tivity labeled y. Function P scores the compatibility between 655

the activity label and the appearance of the key-poses as well 656

as their temporal order. W(·) equals Ws if the sequence takes 657

the subject role, and equals Wo if it takes the object role. We 658

thus account for the asymmetry in many interactions by explic- 659

itly modeling each role. Function Q examines the relative spa- 660

tial distance between the key-poses of one track from the other 661

track, and whether the distance pattern is compatible with the 662

underlying interaction. Formally, we define P and Q as follows: 663

PW (C, y,H) =

K∑
i=1

αT Φ0(C, ti, si, ei) +

K∑
i=1

βT
i Φ1(y, ei) +

K∑
i=1

γT Φ2(C, y, ti, si). (8)

The three terms in the above formulation are graphically il- 664

lustrated in Figure 13 by links associated with potential func- 665

tions Φ0, Φ1, and Φ2 respectively. They represent: 666

9



(a) rank = 1, label = 1, the top scored true positive. The person moves toward the vehicle and opens the trunk.

(b) rank = 4, label = -1, the top scored false positive. The person moves toward the vehicle and bends over the window

(c) rank = 5, label = 1. The person gets into the vehicle and disappears.

(d) rank = 8, label = -1. The person moves toward the vehicle and gets into it. The annotations were missing for this sample.

Figure 12: Top scored samples of VIRAT Ground Release 2.0. We show a subset of frames that best exemplify the output. Person and vehicle bounding boxes are
in red and blue respectively. They are enclosed by a magenta box on frames of the inferred key-segment. The figure is best viewed magnified and in color.

Figure 13: Graphical representation of key-pose model. We score the key-pose
series H1 = [h1

1, h
1
2, . . . , h

1
K ] and H2 = [h2

1, h
2
2, . . . , h

2
K ] for tentative tracks of

people C1 and C2. A h j
i is a key-pose identified by its role, timing, location,

and appearance. A temporal order constraint is enforced among key-poses in
each sequence. The lines with circle (dark green), diamond (red), cross (blue),
and square (magenta) shapes on them represent the potential functions: ex-
emplar match, activity-key-pose match, image appearance match, and distance
respectively. The model parameters Ws,Wo,Wd are adjusted such that the score
fWs ,Wo ,Wd (C1,C2, y,H1,H2) is maximized for the combination of key-poses
that best represent the interaction. For example, a person in an offensive pose
with one hand extended and another bent in a defensive pose are representative
of a punching interaction.

Exemplar Matching Link. αT Φ0(C, ti, si, ei) measures the com- 667

patibility between exemplar ei and the image evidence at time 668

ti and location si. It is defined as: 669

αT Φ0(C, ti, si, ei) =

|E|∑
j=1

α j
T D(φ(C, ti, si), φ(ei))1{ei= jth element o f E}. (9)

φ(C, ti, si) encodes appearance features at time ti and loca- 670

tion si of track C. φ(ei) captures similar information in exem- 671

plar ei. In our work we densely sample HOG [7] and HOF [8] 672

features in an 8×8 grid of non-overlapping cells covering a per- 673

son’s bounding box and concatenate them to represent the ap- 674

pearance and motion of the person. We measure the similarity 675

between two appearance representations by calculating D(·, ·), 676

the normalized Euclidean distance between the features of cor- 677

responding cells in the grid (Figure 14). D(·, ·) is therefore a 678

vector with its ith element being the normalized Euclidean dis- 679

tance of HOG and HOF features at the corresponding locations. 680

1 is an indicator function selecting the parameters associated 681

with exemplar ei. 682

Activity-Keypose Link. βT
i Φ1(y, ei) measures the compatibility 683

between exemplar ei and activity y; the higher it is, the stronger 684

the exemplar ei is associated with activity y. It is formulated as: 685
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Figure 14: 8×8 grid of HOG and HOF dense sampling and the visualization of
D(·, ·) computation between two representations.

βi
T Φ1(y, ei) =

∑
a∈Y

|E|∑
j=1

βia j1{y=a}1{ei= jth element o f E}, (10)

whereY is the finite set of activities we want to recognize. The686

activity key-pose term βi is indexed to capture variations of687

compatibility between an exemplar and an activity over time;688

a particular ei may be better associated with the beginning of y689

than the ending of it. It also allows our model to account for the690

varied orders a key-pose can take in different activities.691

Direct Root Model. γT Φ2(C, y, ti, si) directly measures the692

compatibility between the activity and the image evidence at693

time ti and location si:694

γT Φ2(C, y, ti, si) =
∑
a∈Y

γa
Tφ(C, ti, si)1{y=a}. (11)

In our overall model formulation in Equation 7, Ws =695

[α, βs, γ] and Wo = [α, βo, γ] explicitly model for subject and696

object roles. Note that α and γ are assumed to be identical in697

both roles.698

Function Q evaluates the spatial structure between people699

participating in the interaction by assessing the compatibility700

between activity y and the distance of the ith key-pose of one701

track from the other. It is calculated as:702

QWd (C1,C2, y,H1,H2) =

K∑
i=1

µi
T θ(C2, y, t1

i , s
1
i ) +

K∑
i=1

µi
T θ(C1, y, t2

i , s
2
i ), (12)

where Wd = [µ1, µ2, . . . , µK] and µi
T θ(Cb, y, t j

i , s
j
i ) is703

∑
a∈Y

µia
T bin(‖l(Cb, t j

i ) − s j
i )‖2)1{y=a}. (13)

b , j and l(Cb, t j
i ) is the location of the person enclosed in 704

track Cb at time t j
i . The distance is computed as the center-to- 705

center Euclidean distance, d, of bounding boxes (in pixels) and 706

is discretized as bin(d) = d d
30 e. 707

We adjust the model parameters [Ws,Wo,Wd] such that the 708

more representative a combination of values for latent variables 709

is, the higher the score it is assigned. With this scoring scheme, 710

the key-pose representation of an interaction is: 711

(H1∗,H2∗) = arg max
(H1,H2)∈H1×H2

fWs,Wo,Wd (C1,C2, y,H1,H2), (14)

whereH1×H2 is the space of all possible combinations of key- 712

poses. In the next sections we describe learning and inference 713

procedures for adjusting model parameters and deploying them 714

to obtain (H1∗,H2∗). 715

6.2. Learning 716

We adjust model parameters in a latent struc- 717

tural SVM framework for N pairs of person tracks 718

{(C1
1,C

2
1), (C1

2,C
2
2), . . . , (C1

N ,C
2
N)} labeled {y1, y2, . . . , yN} 719

with yi’s in Y, a discrete set of interaction categories. We 720

formulate the learning criteria as: 721

min
Ws,Wo,Wd ,ξi

λ

2
(WT

s Ws + WT
o Wo + WT

d Wd) +

N∑
i=1

ξi,

s.t. ∀i fWs,Wo,Wd (C1
i ,C

2
i , yi,H1,H2) −

fWs,Wo,Wd (C1
i ,C

2
i , y,H

1,H2) > ∆(yi, y) − ξi, (15)

where ∆(yi, y) is 0-1 loss. The constraint in Equation 15 en- 722

sures that the correct label for a training sample is scored higher 723

than any incorrectly hypothesized label. The optimization prob- 724

lem above is non-convex and is solved using the non-convex ex- 725

tension of the cutting-plane algorithm provided in NRBM op- 726

timization package [10]. We also heuristically initialize model 727

parameters: we divide each track into K non-overlapping tem- 728

poral segments and match the frames in each segment to its 729

nearest exemplar. βiy j for the ith segment is set to the frequency 730

of the jth exemplar in that segment for class label y. 731

6.3. Inference 732

For tracks C1 and C2 of two people and model parameters 733

(Ws,Wo,Wd), we are looking for a combination of latent vari- 734

ables (H1∗,H2∗) among all possible (H1,H2) that maximizes 735

fWs,Wo,Wd (C1,C2, y,H1,H2) for each activity label y. Label with 736

the maximum fWs,Wo,Wd indicates the category of the interaction 737

contained in C1 and C2. Note that maximization can be de- 738

composed into two terms each corresponding to one sequence 739

as the interaction distance function Q in Equation 12 is decom- 740

posable into two independent terms each measuring distance of 741

key-poses in one sequence from the other track: 742
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max
(H1,H2)∈H1×H2

fWs,Wo,Wd (C1,C2, y,H1,H2) = (16)

max
(H1)∈H1

{PW(r1
1)(C

1, y,H1) +

K∑
i=1

µi
T θ(C2, y, t1

i , s
1
i )} +

max
(H2)∈H2

{PW(r2
1)(C

2, y,H2) +

K∑
i=1

µi
T θ(C1, y, t2

i , s
2
i )}.

We can rewrite the maximization for a track C as:743

max
H

K∑
i=1

Ati
i s.t. ti < ti+1∀i = 1, 2, . . . ,K − 1; (17)

where for each hi in an H, ri ∈ {sub ject, ob ject}, 1 ≤ ti ≤ L (L744

is the track length), si varies in a neighborhood around the tth
i745

frame of the track, and ei ∈ E. Ati
i is defined as:746

Ati
i = max

ri,si,ei
{αT Φ0(C, ti, si, ei) + βT

i Φ1(y, ei) +

γT Φ2(C, y, ti, si) + µT
i θ(C

b, y, ti, si)}; (18)

Cb is the other track involved in the interaction. β is βs if ri’s747

take the subject role and is βo otherwise.748

The chronological ordering constraint on key-pose timings749

allows us to formulate inference as a dynamic programming750

problem that can be solved efficiently. We define F(m, t) as the751

maximum value of max
∑m

i=1 Ati
i for ti < ti+1 ∈ {1, 2, . . . , t} ∀i =752

1, 2, . . . ,m−1. The following relations specify how F(m, t) can753

be computed recursively:754

F(1, t) = max{A1
1, A

2
1, . . . , A

t
1}, (19)

F(m,m) = F(m − 1,m − 1) + Am
m, (20)

F(m, t) = max{F(m − 1, t − 1) + (21)
At

m, F(m, t − 1)}, m < t

F(K, L) gives the solution to each term in Equation 17. The755

optimal key-poses for each track can then be retrieved by back-756

tracking. The order of growth for this process is O(KL), again757

linear in track length L for fixed K.758

7. Evaluation of Key-Pose Model759

We evaluate the key-pose model for interaction classification760

on the UT-Interaction [39] benchmark. We first describe the761

data and our training-test setup as well as the preprocessing762

steps for obtaining tentative tracks of people and the set of their763

discriminative poses. We subsequently specify the key-pose764

model parameters and present the quantitative and qualitative765

results of interaction recognition based on key-pose representa-766

tions.767

7.1. UT-Interaction Dataset 768

The dataset portrays two people interacting with each other 769

in two scenes: a parking lot (Set 1) and a lawn (Set 2). There 770

are 10 videos (720×480, 30fps) in each scene with average du- 771

ration of one minute. Each video provides an average of 8 sam- 772

ple interactions that are continuously performed by actors and 773

contains at least a sample of each interaction category: shake- 774

hands, point, hug, push, kick, and punch. While there is some 775

camera jitter and pedestrians walking by in some of the videos, 776

the scenes are otherwise static and clear. People’s appearance 777

varies across videos but camera viewpoint and the human height 778

in pixels is stable (∼200). Ground truth annotations provide 779

time intervals and bounding boxes for interactions that give the 780

120 cropped video clips for the classification task. We augment 781

these annotations for the pointing interaction to also account for 782

the person being pointed to. In our training-test setup, we fol- 783

low the 10-fold leave-one-out cross validation scheme of [39] 784

and report the average performance. 785

7.2. Preprocessing 786

We should provide our model with initial tracks of people and 787

a set of exemplar poses, E, they take while interacting with each 788

other. Below, we detail the steps to obtain this information: 789

Person Tracks. We use Dalal and Triggs [7]’s human detector 790

on the first frame of every video clip and pick the two out of the 791

three top scoring detections that are closest horizontally. We 792

initialize Ross et al. [36]’s tracker to get the person tracks that 793

will be later input to our model. We construct tracks at two 794

different scales to accommodate the camera zoom in videos of 795

Set 1. 796

Exemplar Set. We train a multi-class linear SVM classifier 797

based on HOG and HOF features to score how discriminative 798

frames of annotated tracks are of the interactions they each be- 799

long to. We then cluster the highest scored bounding boxes to 800

get the discriminative exemplars for each interaction category 801

separately. Note that the initial classification step ensures that 802

our K-Means clustering does not simply favor the most com- 803

mon as opposed to the most discriminative poses when con- 804

structing clusters. This heuristic procedure is efficient and ef- 805

fective, while it achieves what more sophisticated clustering al- 806

gorithms (e.g. [26]) do in our experiments. We use [13] to train 807

the pose classifier and [12] to perform K-Means clustering with 808

20 clusters and D(·, ·) (see 6.1.2) as the distance measure. Since 809

the cluster centroids are averaged virtual poses and do not exist 810

in the data, we use the samples from training set that are nearest 811

to the cluster centers as the final set of exemplars. 812

7.3. Experiments 813

We compare our key-pose model against a global BoW + 814

SVM model that does not account for any structure. We also 815

construct two other baselines to examine the importance of 816

structural information, namely the relative spatial movements 817

and the differentiation of subject-object role in the interaction: 818

1) a model that includes neither the distance term, Q, nor the 819
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Model Set 1 Set 2 Avg
Key-pose model and its structural elements
Global BoW + SVM 68.6% 70.0% 69.3%
Temporal ordering only 83.3% 86.7% 85.0%
Temporal + role 86.7% 88.3% 87.5%
Spatial + temporal + role 93.3% 90.0% 91.7%
Other models in the literature
Ryoo [37] 85% - -
Yu et al. [52] - - 83%
Yao et al. [51] 88% 80% 84%
Zhang et al. [53] 95% 90% 92%
Kong et al. [22] 88.3% - -
Raptis and Sigal [35] 93.3% - -

Table 3: Classification performance of our model on the UT-Interaction bench-
mark and comparisons with other models. Set 1 and Set 2 refer to parking lot
and lawn scenes respectively. We progressively consider more structural infor-
mation, moving from the first baseline (global BoW + SVM) to our full model
that incorporates spatial and temporal structure as well as the subject-object
role of actors. The best reported performance of other papers are included in
the table.

latent variable “role” (i.e. βs = βo), and 2) a model where only820

the distance term is ignored.821

The key-pose model in the following experiments identifies822

a fixed number of key-poses (K = 5) in tracks obtained from823

video clips. The (X,Y) location, s, of a key-pose varies in the824

vicinity of the input track (Xtr,Ytr) in a small grid, i.e. X ∈825

{Xtr − δX , Xtr, Xtr + δX} and Y ∈ {Ytr − δY ,Ytr,Ytr + δY }. In our826

experiments we set δX and δY to 20 and 15 pixels respectively.827

The global BoW + SVM model is a “bag of poses” ap-828

proach – we use the exemplar set (see 7.2) as pose prototypes.829

The frequency of the occurrence of these prototypes over a830

video sequence is computed and stored in a histogram. This831

bag of words-style approach is akin to that used in Wang and832

Mori [46], capturing the frequencies of human pose prototypes833

across a video sequence. The subsequent models build addi-834

tional spatio-temporal structure that enhance classification ac-835

curacy.836

Our model achieves 91.7% average accuracy for the classifi-837

cation task, a 22.4%-point improvement over the global model838

(Table 3). Accounting for the temporal ordering of discrimi-839

native poses alone achieves 85.5% accuracy and is improved840

by ≈3% with the addition of the role variable. By addition-841

ally modeling the relative distance in our full model, we obtain842

the highest accuracy. Confusion matrices in Figure 15 provide843

more details regarding the performance of our model for differ-844

ent interactions. As shown in the figure, there is some confusion845

between “push” and “punch.” It is not unexpected though; the846

two activities are similar in both appearance and relative move-847

ments of the people involved.848

Varying the number of key-poses K (Table 4) suggests that849

very few key-poses (i.e. K = 1 or 2) fail to capture the temporal850

dynamics of interactions. Moreover, performance is relatively851

unchanged for very large K’s (e.g. K = 10).852

Overall, our method is competitive with the state of the art853

methods. Further, it does not require additional labeling effort854

– it only needs a per-sequence interaction label. The key-poses855

#key-poses (K) Set 1 Set 2 Avg
K = 1 89.9% 86.7% 88.3%
K = 2 83.5% 86.7% 85.1%
K = 5 93.3% 90.0% 91.7%

K = 10 88.0% 90.0% 89.0%

Table 4: Classification performance of our model on the UT-Interaction bench-
mark for varied number of key-poses (K). Very few key-poses fail to capture
the temporal dynamics of interactions. Larger values, such as K = 5, are ef-
fective for the UT-interaction dataset. Very large numbers, e.g. K = 10, do not
lead to any improvements.

Figure 16: The key-pose series our model produces for a 69-frame video clip.
At the top, we have visualized the exemplars matched to each frame at the bot-
tom. The key-poses are enclosed in a red box. The number under each frame
is the frame number. The appearance of exemplars matches the image evi-
dence. The heat-map next to each exemplar depicts the learned model weights
for matching to each exemplar. As the heat-maps show, higher weights (darker
red cells) are learned for the discriminative appearance that covers the person
and are largely concentrated on the extended hands for pushing. The key-poses
are more densely localized at discriminative moments such as when extending
hands and making contact with the other person.

and their spatio-temporal locations are discovered by the model. 856

The approach seems robust to intra-class variations and inter- 857

person occlusions, likely due to the proposed key-pose repre- 858

sentation. 859

Figures 16-18 illustrate how our model works by visualizing 860

exemplar matching, activity-key pose weights, and the distance 861

profile of key-poses over time. We observe that the key-pose 862

model successfully localizes discriminative frames of a track 863

(enclosed by a red box in Figure 16) and associates them with 864

similar exemplars. Another interesting observation is that the 865

key-poses are not uniformly spaced in time. In fact, they are 866

denser at the peak moments, for example the duration when 867

the attacker’s hands are extended and the contact happens in a 868

pushing interaction. 869

Moreover, our model handles pose variations using the exem- 870

plar representation. The three top scored exemplars depicted for 871

each key-pose in Figure 17 vary considerably in appearance. 872

We also examine the contribution of the spatial distance con- 873

straint when a key-pose is localized. As Figure 18 reveals, the 874

spatial relation profile differs across interactions. As expected, 875

the model learns shorter distances for hugging and longer ones 876

for pointing. Additionally, the profile for pushing correctly cap- 877

tures the variations in distance throughout the interaction; the 878

model associates shorter distances with the starting key-poses 879

and longer distances with the ones at the end. 880
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(a) Set 1 (b) Set 2

Figure 15: Confusion matrices of classification performance on the UT-Interaction dataset. Rows are associated with ground truth, while columns represent
predictions.

Figure 17: The heat-map and top scored exemplars for a key-pose in hand-
shake, punch, and push interactions. Each heat-map represents 20 exemplars
associated with the activity vertically, and the 5 key-poses in the key-pose series
horizontally. Therefore, each cell on the heat-map scores how well a particular
exemplar matches the activity at the time of the key-pose; the higher the score,
the redder the cell. The top scored exemplars are varied in appearance.

Figure 18: Visualization of discretized spatial distances of key-poses for hug,
point, and push interactions with discrete distance, key-poses, and the associ-
ated weights on three axes. The higher and darker the bar, the larger its weight.
Not surprisingly, smaller distances are preferred for hug while the opposite is
true for point. The preferred distance during pushing changes from near (first
key-pose) to far (last key-pose).

8. Conclusion 881

In this paper we developed structured models for human in- 882

teraction detection and recognition in video sequences. These 883

models select a set of key-components, discriminative moments 884

in a video sequence that are important evidence for the presence 885

of a particular interaction. We demonstrated the effectiveness 886

of this model for detecting human-vehicle interactions in long 887

surveillance videos. On the VIRAT dataset we showed that ap- 888

pearance features combined with relative distance and motion 889

features can be effective for detection, and accuracy is enhanced 890

by the selection of an important key-component. Further exper- 891

iments on the UT-Interaction dataset of human-human interac- 892

tions verified that incorporating temporal and spatial structure 893

in the form of a series of key-components results in state-of- 894

the-art classification performance, and improvements over un- 895

structured baselines. 896

We demonstrated highly accurate interaction detection when 897

good quality human detection and tracking are available, from 898

ground truth data on VIRAT and automatic tracks on UT- 899

Interaction. Automatic tracks on VIRAT still resulted in ef- 900

fective pruning of potential interactions. Directions for future 901

work include further experimentation with other trackers and 902

refinements to the model to choose the appropriate number of 903

key-poses for each sequence automatically. 904
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