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Abstract

Exploration of large unknown planetary environments will rely on rovers that can autonomously cover
distances of kilometres and maintain precise information about their location with respect to local features.
During such traversals, the rovers will create photo-realistic three dimensional (3D) models of visited sites for
autonomous operations on-site and mission planning on Earth. Currently rover position is estimated using
wheel odometry, which is sufficient for short traversals but as error accumulates quickly, it is unsuitable for
long distances. At MD Robotics, we are working on imaging technologies for future planetary rover missions.
Two complementary technologies are currently investigated: a stereo based vision system and a scanning
time-of-flight LIDAR system. Both imaging systems have been installed on board of two experimental
rovers and tested in laboratory and outdoor environments. With stereo cameras, the rover can create
photo-realistic 3D model as well as provide visual odometry that is more accurate than the rover dead
reckoning. With the LIDAR, the rover can match 3D scans to estimate the relative location to improve the
wheel and visual odometry.

1 Introduction

Future planetary rovers will have to operate au-
tonomously with minimum operator supervision due
to transmission delay, limited bandwidth and in-
termittent communication. A prerequisite for au-
tonomous operation is the ability to sense and per-
ceive the environment to react appropriately and to
make the right decisions.

Among various perception tasks, the ability to es-
timate the rover position using locally sensed data
is essential for navigation as errors in wheel odome-
try grow quickly. It prevents the autonomous rover
from getting lost, and allows the rover to reach re-
quired destinations, perform structured exploration
and recognize previously visited places. Localization
with respect to an absolute coordinates system is pos-
sible by matching locally sensed data with remotely
sensed data from satellites.

At MD Robotics, we are working on two comple-
mentary imaging technologies for future planetary
rover missions. A stereo based vision system and a
scanning time-of-flight LIDAR system have been in-

tegrated on board of two small rovers.

The stereo vision system creates photo-realistic 3D
surface models from sequences of images obtained
from cameras mounted on a moving rover. Com-
puted camera motion is used as visual odometry to
complement the rover dead reckoning for accurate lo-
calization. The prototype system can run in near real
time using a combination of dedicated hardware and
software.

Scanning LIDAR systems offer much longer op-
erational range (100s of metres) and accuracy than
stereo systems (10s of metres). Therefore, they allow
better planning and execution of autonomous rover
operations. This comes, however, with an additional
mass and power requirements. We have developed
a rover localization technique that uses multiple LI-
DAR scans to estimate the rover relative location.
The scans are obtained from different locations and
automatically matched. Multiple scans are registered
together to provide a 3D model of visited sites.

Section 2 gives a brief literature survey on visual
odometry for planetary rovers. Section 3 overviews
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the MDR rover system architecture and operations.
The stereo vision system and the LIDAR system are
described in Sections 4 and 5 respectively. Experi-
mental results with both systems in various environ-
ments are presented in Section 6. Finally we conclude
and discuss some future work in Section 7.

2 Related Work
There has been various work on visual odometry for

planetary rovers with promising results. Semi-sparse
terrain maps were constructed and matched succes-
sively to obtain a vision-based state estimate in [4].
An extended Kalman Filter was then applied to fuse
with wheel odometry. Experiments at JPL’s rover
pit showed that the results had more than double the
accuracy of the dead reckoning estimate.

A maximum likelihood estimation technique for
rover localization in natural terrain was presented in
[12] by matching range maps. Stereo vision gener-
ated local terrain range map which was matched to a
previously generated 3D occupancy map to estimate
rover pose. Good qualitative results were obtained
when tested with Sojourner data, running on-board
Rocky 7 Mars rover prototype.

Pixel tracking in stereo image sequences was pro-
posed in [9] to estimate visual odometry in outdoor
unstructured terrain, with around 4% error over 25
metres. [7] evaluated a similar algorithm on the Mar-
sokhod robot on many runs totaling several hundreds
of metres and achieved about 2% translation error.

[6] proposed that a set of concurrent and com-
plementary algorithms are required for rover local-
ization, as no single localization algorithm is robust
enough to fulfill various localization needs during long
range navigation.

In addition to stereo vision, [11] discussed the use
of inertial sensors to estimate camera ego-motion and
to augment stereo tracking on rough terrain. [13]
showed that even with a robust stereo ego-motion
method, the system accumulated super-linear error
due to increasing orientation error. Therefore, they
proposed incorporating an absolute orientation sen-
sor to reduce the error growth to linear. They
achieved 1.2% error in experiments carried out with
a prototype Mars rover.

In our work, we employ both a stereo vision sys-
tem and a LIDAR system. The visual odometry from
stereo vision can complement rover dead reckoning
continuously, while the LIDAR scan matching can
estimate the relative rover location infrequently to
improve the wheel and visual odometry.

Most of the previous work used vision systems for
localization only, whereas we also use the vision sys-
tem for 3D modeling. Recently, [17] proposed us-

(a) (b)
Figure 1: Rover system with (a) a stereo camera (b)
a LIDAR.

ing stereo images for recalibration and also for re-
constructing 3D terrain models which were texture
mapped with the original images. They have car-
ried out preliminary experiments to create digital el-
evation maps at the ESA planetary terrain testbed.
The model was then used to plan a trajectory for the
Nanokhod rover. However, their vision system was
part of the lander, not on-board of the rover. There-
fore, the terrain map generated will be limited to the
surroundings of the landing site only.

3 MDR Rover System
The MDR R&D rover system shown in Figure 1

consists of a 4-wheel rover developed by the Uni-
versity of Toronto Institute of Aerospace Studies
(UTIAS). The batteries of the rover are inside the
tires to keep the centre of gravity low. We have de-
veloped other hardware and software components to
provide the capability of monitoring and controlling
the rover in its environment remotely.

3.1 Architecture
A Bumblebee stereo camera from Point Grey Re-

search (PGR)1 has been integrated into the rover sys-
tem, as shown in Figure 1(a), with the following fea-
tures:
• Stereo image capture up to 7 pairs per second
• 8-bit 640x480 greyscale image
• 70 degrees horizontal and 40 degrees vertical field

of view
• Firewire interface

To increase the effective field of view of the camera,
it is installed on top of a pan-tilt unit, for capturing
multiple images.

A LIDAR device, the ILRIS-3D time-of-flight laser
rangefinder from Optech2, has been integrated with
the rover, as shown in Figure 1(b). ILRIS-3D can

1www.ptgrey.com
2www.optech.ca
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Figure 2: MDR rover system architecture.

capture 3D information of the environment, with the
following features:
• Data capture rate up to 2000 points per second
• Each data point consists of X, Y, Z coordinates

and intensity value
• Data point accuracy in the range of 5 mm
• 40 degrees horizontal field of view

To increase the effective field of view of the LIDAR,
a turntable has been installed on the rover to rotate
the LIDAR and create panoramic scans by registering
multiple scans together.

There are four major software modules in this sys-
tem: Rover Operator Station (ROS), Non-Real-Time
3D (NRT3D) Vision System, Script Executor and
the Localization module. ROS, NRT3D and the Lo-
calization module run on a Ground Operator Sta-
tion (GOS) computer with dual Pentium IV 2.4GHz
processors. The Script Executor runs on the rover
computer with a Pentium III 700 MHz processor.
The two computers communicate via wireless ether-
net and all modules communicate with each other
through TCP/IP. Figure 2 shows a graphical view of
the whole system architecture.

The ROS is a standalone graphical user interface
station for the operator to create mission scripts, re-
hearse and execute these scripts. The operator also
observes the rover’s status and its environment re-
motely. It is based on the Remote Tele-operation
of Robotics (RTR) Operator Station framework [14],
which is designed for scripted control of robotic equip-
ment from a remote location.

A screenshot of ROS is shown in Figure 3. The
left window displays a 3D view of the scanned en-

Figure 3: Rover Operator Station user interface.

vironment and a virtual model of the rover placed
at its estimated location. The right top window dis-
plays a Digital Elevation Map, a top down view of the
scanned scene. The white icon represents the rover
location and the map is colour coded to indicate the
height. The right bottom window displays the rover
telemetry including: estimated location and heading,
orientation of the pan and tilt unit, rover attitude,
state of the batteries and readings obtained from
sonars. Telemetry is updated automatically with in-
formation received from the rover.

With the stereo camera attached to the rover, the
NRT3D Vision System takes the stereo image data
and generates 3D models of the rover’s environment.
The images may be acquired from a stationary or
moving rover. In the case where a LIDAR is attached
to the rover, the Localization module analyses the
3D data captured by the LIDAR and estimates the
motion of rover between scans. In the current archi-
tecture, vision processing is performed on the GOS
computer due to the limited computational resources
available on the rover. Therefore, the transfer of im-
ages or LIDAR scans via the wireless ethernet is a
bottleneck of the current system.

The Script Executor [10] on the rover controls all
the physical components of the rover and drives the
rover in the way the user commands. It receives and
executes scripts and commands from ROS. It also
sends the telemetry and image or LIDAR data back
to ROS and NRT3D.

The rover system can use different ways to estimate
its current position and orientation. It can measure
how much each wheel has traveled from the wheel
encoder readings and calculate the 2D motion of the
rover. With the stereo camera, NRT3D can track
image features found in the stereo images captured
at run-time and use them to estimate the 3D motion
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of the rover. In the case where a LIDAR is used,
the Localization module can find out the positional
and orientation information by aligning the 3D points
generated by the LIDAR.
3.2 Operations

The MDR R&D rover system can be used in situa-
tions where there is no prior knowledge of the rover’s
working environment. The rover uses stereo cam-
era, LIDAR and sonar to sense the environment, and
builds 3D model of the environment during execution.
The steps of this process are as follows:

1. The rover scans the environment using stereo
camera or LIDAR and transmits the raw data
to the GOS computer

2. 3D models of the scene are created and sent to
ROS for display

3. Depending on the configuration:

• With the stereo camera, NRT3D computes
the visual odometry to update rover’s wheel
odometry

• With the LIDAR, the Localization module
aligns two LIDAR scans and estimates the
relative pose between these locations

4. Operator plans a script as a series of way-points
through ROS

5. Operator verifies the script by rehearsing it in a
simulator and transmits it from ROS to the rover

6. Script Executor running on the rover receives
and executes the script

7. The rover moves by following the specified way-
points using wheel odometry

8. Telemetry is transmitted from the rover to the
GOS computer

9. Repeat the steps above.

4 Stereo Vision System
Visual odometry relies on extracting tie points in

image sequences and computing their motion between
frames. Extracting and matching image corners [3] is
less computationally intensive, but the appearance
of corners changes depending on the viewpoint and
corners can only be tracked between a small number
of frames, which increases cumulative error. Using
higher level features enables matching the same fea-
tures over longer sequences, which reduces this error
at the expense of additional computation.

Tracking features in monocular images provides the
motion estimate up to an unknown scale factor and
the solution has singularities for some trajectories or
scenes. Using stereo images is better as it provides
Euclidean metrics and is always well conditioned re-
gardless of the motion and scenes.

4.1 System Architecture
Figure 4 shows the architecture of the NRT3D Vi-

sion System. Images are captured by the stereo cam-
era and we compute dense stereo to obtain 3D data.
The system does not require any external sensors for
computing the motion as it automatically extracts
and tracks natural tie points in the images. The re-
covered camera motion is used to integrate 3D data
computed using dense stereo algorithms from the se-
quences. The 3D data is converted to surface meshes,
which are enhanced by mapping the texture.

This 3D modeling process achieves significant data
compression, typical from 25:1 to 100:1, allowing the
transfer of data as compact meshes instead of raw
images.

4.2 Dense Stereo
In our earlier work, we used the 3DAware PCI card

from Tyzx 3 for dense stereo computation. It consists
of a DeepSea chip, which is an optimized hardware
implementation of the Census stereo algorithm [18].
As with other stereo algorithms, texture is required
for stereo matching, and hence there is no match for
uniform regions.

The Tyzx system can compute dense stereo at 30Hz
but is limited to its own stereo camera and for im-
ages up to 500x450 resolution. We now use the higher
quality Bumblebee stereo camera from PGR with
640x480 image resolution. We run PGR’s optimized
Triclops library for correlation-based dense stereo on
the processor.

4.3 SIFT Features
We chose a high level set of natural visual features

called Scale Invariant Feature Transform (SIFT) as
the tie points to compute visual odometry. SIFT
was developed by Lowe [8] for image feature genera-
tion in object recognition applications. The features
are invariant to image translation, scaling, rotation,
and partially invariant to illumination changes and
affine or 3D projection. These characteristics make
them suitable landmarks for robust matching when
the cameras are moving around in an environment,
as the landmarks are observed from different angles,
distances or under different illumination.

The SIFT features are determined by identifying
repeatable points in a pyramid of scaled images. Fea-
ture locations are identified by detecting maxima and
minima in the Difference-Of-Gaussian pyramid. A
subpixel location, scale and orientation are associated
with each SIFT feature.

Sufficiently distinctive features are required to
match scenes in the map. In order to achieve high

3www.tyzx.com
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Figure 4: Stereo vision system architecture.

specificity, a local feature vector [8] is formed by mea-
suring the local image gradients at a number of ori-
entations in coordinates relative to the location, scale
and orientation of the feature.
4.4 FPGA Implementation

The high computational requirements of vision al-
gorithms often limit the amount of distance and sci-
ence that can be safely achieved by rovers equipped
with radiation hardened processors. In order to speed
up performance, we used dedicated hardware such as
Field Programmable Gate Array (FPGA) for some
intensive image processing to offload the processor.

For this work, we have implemented SIFT extrac-
tion on a Virtex II Xilinx FPGA as it is computation-
ally intensive. The fixed point hardware implemen-
tation of SIFT was developed based on the floating
point software version. To implement the complex
SIFT algorithm directly using Very High-Level De-
sign Language (VHDL) would have been a lengthy
and time consuming task. A high level environment
was needed.

System Generator is a software tool for modeling
and designing FPGA-based signal processing systems
in the Matlab-Simulink environment. Simulink pro-
vides a graphical environment for creating and mod-
eling dynamical systems. System Generator consists
of a Simulink library called a Xilinx Blockset, and
software to translate a Simulink model into a faithful
hardware realization of the model.

Even though the majority of the design was created
with System Generator, there was coding in VHDL
for low level processes that were not efficient to do
with the Xilinx Block sets (such as DMA transfers,
memory access routines and wrapper files). The Sys-
tem Generator design, low level VHDL coding and
wrapper files were all brought into the Xilinx Inte-
grated Synthesis Environment (ISE) software tool.
The final bit file was generated within the ISE envi-
ronment which then could be uploaded to the FPGA

(a) (b)
Figure 5: (a) Stereo matched SIFT features. (b)
SIFT features that are matched to the database.

for execution.
Since the software uses floating point operations,

testing was required to convert the software imple-
mentation to work with fixed point operations. Fur-
thermore, many of the routines in the software ver-
sion needed to be modified to make the hardware im-
plementation efficient.

To extract SIFT features from a 640x480 image, it
takes 600 ms for a Pentium III 700MHz processor,
while the FPGA can do so within 60 ms and leaving
the processor available for other tasks.

4.5 Visual Odometry

The SIFT features in the left and right images are
stereo matched using the following criteria: epipo-
lar constraint, disparity constraint, orientation con-
straint, scale constraint, local feature vector con-
straint and unique match constraint [16]. The sub-
pixel disparity for each matched feature can then be
computed. The stereo matched SIFT features in a
lab scene are shown in Figure 5(a), where the length
of the line is proportional to the disparity. We can
see that all the matches are consistent and correct.
Typically, we obtain hundreds of SIFT 3D features.

Subsequently we can compute the 3D position
(X, Y, Z) of each stereo matched SIFT feature, us-
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ing the following equations:

X =
(u− u0)I

d
; Y =

(v0 − v)I
d

; Z =
fI

d

where (u, v, d) are the SIFT image location and dis-
parity, (u0, v0) are the image centre coordinates, I is
the interocular distance and f is the focal length.

Since the rover moves in very rough terrain, we
would like to recover the 6 degrees of freedom visual
odometry, i.e., camera ego-motion, when the cameras
are moving in 3D. We employ a Simultaneous Local-
ization And Mapping (SLAM) approach that uses the
SIFT features to localize and simultaneously build a
database map [16]. Instead of frame to frame match-
ing, we match the SIFT features at each frame with
the database to reduce error accumulation. [13] re-
ported a 27.7% reduction in navigation error when
multi-frame tracking is used, rather than considering
each pair of frames separately.

The local image vector is used to match SIFT fea-
tures, which are highly distinctive to facilitate match-
ing with very few false matches. We can then find the
camera movement that would bring each projected
SIFT feature into best alignment with its matching
feature. A weighted least squares procedure is carried
out taking into account the feature uncertainty. Fig-
ure 5(b) shows the SIFT features that are matched
to the database. The line connecting the previous
position to the current position is analogous to op-
tical flow and we can see that all the matches are
consistent and correct.

4.6 3D Modeling
As the rover moves around, dense 3D data is ob-

tained relative to the camera position at each frame.
The 3D data is backward transformed to the ini-
tial camera coordinates frame based on the estimated
camera pose.

To generate triangular meshes as 3D models, we
employ a voxel-based method [15], which accumulates
3D points with their associated normals. It creates
a mesh using all the 3D points, fills up holes and
works well for data with significant overlap. The 3D
data are accumulated into voxels at each frame. It
takes a few seconds to construct the triangular mesh
at the end, which is dependent on the data size and
the voxel resolution.

In order to create a photo-realistic reconstruction
of the scene, texture mapping is required. A tex-
ture mapped mesh is much more visually appealing
and easier to interpret. Greyscale images from the
stereo camera are used for texture mapping. In gen-
eral, other modalities such as colour images or IR
images can be used for texture mapping, as long as

Figure 6: An example of a typical LIDAR scan.

the colour/IR camera has been calibrated with the
stereo vision system.

As each triangle may be observed in multiple tex-
ture images, we want to select the best texture image
for each triangle. A texture image is considered to be
better if it is captured when the camera is facing the
triangle directly. To find the best texture, we look
at all the texture images and find the one that gives
the largest area upon 2D projection according to the
camera pose.

Moreover, we need to take into account any occlu-
sion. For example, if there is an object in front of the
triangle, then the image captured when the camera is
facing the triangle directly should not be used, as the
texture will be for the object in front. In this case,
we will need to look for the next texture image that
gives the second largest area upon projection.

5 LIDAR System
One advantage of using range data from LIDAR

instead of stereo cameras for localization is that 3D
measurements are readily available without the need
to perform any feature extraction and 3D reconstruc-
tion from the images. The accuracy of stereo vision
relies heavily on lighting conditions, which can of-
ten be unfavourable in an environment like Mars. In
addition, the dense nature of LIDAR range data pro-
vides a more precise representation of the scene and
can result in better registration.

Figure 6 is an example of a typical LIDAR scan.
Note the narrow wedge shape that corresponds to
the 40 degree field of view of the LIDAR and lower
sampling density for surfaces further away.
5.1 Rover Localization

The scan is represented by a set of points in 3D
space. Let

pi(f) = [X Y Z 1]T

represent the location of point i in homogenous coor-
dinates in the scan f , and

P (f) = [p0(f) p1(f) . . . pN−1(f)]
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be the set of points in the scan where N is the total
number of points in the scan, then

P (f + 1) =
[

R(f + 1, f) t(f + 1, f)
OT 1

]
P (f)

where R(f + 1, f) is a 3x3 rotation matrix and t(f +
1, f) = [tx ty tz]T is a translation vector. Together the
set {R(f+1, f), t(f+1, f)} describes the relative pose
of the LIDAR between f and f + 1.

The problem of rover localization using 3D range
scans is then to estimate the relative pose {R(f +
1, f), t(f +1, f)} given P (f) and P (f +1). Then the
estimates, R̂(f + 1, f) and t̂(f + 1, f), can be used
to correct the odometry error and provide a more
accurate estimate of the rover’s pose.
5.2 ICP Algorithm

Iterative Closest Point (ICP) algorithm was intro-
duced by Besl and McKay [1] to register two sets
of 3D data. We employ a variant of the ICP algo-
rithm [5] to estimate the relative rover location by
aligning 3D range scans of natural terrain. The algo-
rithm has the following features:

1. Closest point matching is performed between two
sets of 3D points. There is no need to pre-process
one set of data to generate a mesh representa-
tion.

2. The Euclidean distance between two 3D points is
the measurement used for determining the near-
est neighbour.

3. A kd-tree data structure is used to accelerate the
search for the closest point.

4. Rejection of corresponding point pairs as outliers
is based on a threshold for maximum distance be-
tween the corresponding points. This threshold
can be pre-defined or determined dynamically by
statistical match filtering.

5. The registration between the two sets of corre-
sponding points is done by least squares esti-
mation where rotation is represented as quater-
nions.

6. Apart from a maximum number of iterations and
a maximum RMS error, the iteration terminates
when the convergence rate of the RMS error is
sufficiently slow. This criterion is added to opti-
mize between accuracy and computation time.

One of the characteristics of range data is the large
number of data points that each scan contains. In or-
der to reduce computation time, the data is first sam-
pled before being passed to ICP. Since the data is col-
lected in the order of the LIDAR scan lines, uniform
sampling is a reasonable choice of sampling technique
in preserving most of the scene information.

A LIDAR scan of natural terrain typically contains
of a large number of data points lying on the sur-
face of the ground. Very often, these points do not
provide unique information for the alignment of two
range scans, and they even sometimes bias the results
due to the unique pie shape of the data. Hence an ad-
ditional pre-processing step for the registration is to
remove the flat surfaces by fitting the data to a plane
using Random Sample Consensus (RANSAC) [2]. By
removing the points that belong to this plane, it fur-
ther reduces the size of the data sets to be processed
by the ICP algorithm.

The wheel odometry provides an initial estimate,
which is required by ICP. Once the relative location
is found, multiple 3D scans can be registered together
as a complete 3D model.
5.3 Wheel Odometry Correction

To correct wheel odometry, the ICP algorithm was
applied to consecutive pairs of scans. The procedure
is as follows:

1. The wheel odometry at f = 1 is used as initial es-
timate for the rover’s relative pose for ICP, which
will give R̂(1, 0) and t̂(1, 0).

2. For each consecutive pair of scans, the ICP al-
gorithm refines the estimates, R̂(f + 1, f) and
t̂(f + 1, f) and use them to correct the rover’s
pose with respect to f = 0 , that is, computing
R̂(f + 1, 0) and t̂(f + 1, 0).

3. Then for registering P (f + 1) and P (f + 2), the
corrected pose {R̂(f + 1, 0), t̂(f + 1, 0)} and the
wheel odometry at f + 2 provide an initial esti-
mate to initialize the ICP algorithm.

This procedure attempts to correct the rover’s pose
at each location so that errors in the wheel odometry
will not accumulate over a long distance of travel.

6 Experimental Results
Most of the experiments with LIDAR were con-

ducted at a local quarry, which allowed us to use the
full range of the LIDAR. Experiments with stereo
vision system were conducted at the University of
Toronto’s MarsDome. Additional experiments were
conducted at the MDR parking lot and laboratory.

The first system, wheel odometry, uses wheel en-
coders to estimate the rover location and heading.
This system provides continuous estimates of the
rover location. The second system, visual odometry,
operates while the rover is moving and uses sequences
of stereo image to compute the rover motion. This
system provides continuous estimates of the rover po-
sition. The third system uses range data from LIDAR
operating on a stationary rover and scanning the en-
vironment. Two scans obtained from two different
locations are matched to provide information about
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Figure 7: Wheel odometry, visual odometry and
ground truth.

the rover pose between scans. This system provides
discrete rover positions at the scan locations.

Experiments have been carried out to compare
these three localization approaches. The obtained
measurements have been compared with ground
truth measurements collected using a surveying Total
Station in the quarry and parking lot experiments.

6.1 Wheel Odometry
The wheel odometry of the rover is computed us-

ing the wheel encoder readings in each wheel. The
implemented algorithm assumes that the rover trav-
els on a flat surface and all its wheels have the same
radius. Several tests on wheel odometry have been
performed on different surfaces.

Figure 7 shows the results generated in a test run
on the paved surface of the parking lot. The red solid
line in the figure indicates the locations of the rover
observed by the Total Station and the green dotted
line corresponds to the wheel odometry estimation.
The results show that the wheel odometry can pro-
vide an approximate estimation of the position and
heading of the rover. Wheel odometry works best on
hard surfaces with good traction when there is mini-
mum wheel slippage.

Figure 8 shows an illustrative example of wheel
odometry error accumulation. The rover was follow-
ing a straight line motion of around 30m across the
MarsDome gravel surface. The scans were performed
from the stationary rover and successive scans were
integrated using wheel odometry only.

Various experiments indicate the rate that the
wheel odometry accumulates error depends on the
type of surface. For hard, flat surfaces that provide
consistent traction for all wheels (lab floor), this rate
is small. For surfaces that do not provide good con-
tact (MarsDome gravel), the orientation error reaches

Figure 8: Wheel odometry error during straight line
motion of 30m on MarsDome gravel surface.

Figure 9: A screenshot of a 3D model created in the
lab.

180 degrees for 30m traveled. It is expected that for
soft surfaces (sand), the error accumulation rate is
even higher.
6.2 Stereo Vision

The blue dashed line in Figure 7 shows the rover
position estimate generated by visual odometry. The
results show that visual odometry can be used to es-
timate the position and heading of the rover.

The cumulative error in the estimated position over
the distance of 4.5 m for wheel odometry is over 24%
and for visual odometry 3.6%. These results are con-
sistent with other experiments conducted and similar
to results reported in [9, 7]. Thus visual odometry
is a viable alternative to wheel odometry for rover
localization.

Apart from visual odometry, the NRT3D Vision
System also generates a photo-realistic 3D model.
Figure 9 shows a screenshot of a 3D model recon-
struction of a lab environment using the stereo vision
system.

By using a combination of dedicated hardware and
software, NRT3D can achieve near real time per-
formance. With our earlier Tyzx stereo camera of
500x450 resolution, the pure software system runs at
2 Hz. With the Tyzx dense stereo card, it improves
to 4 Hz. With both the Tyzx dense stereo card and
the SIFT FPGA, the system runs at 7 Hz.
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Figure 10: Rover experiments at a local quarry.

Figure 11: Estimated rover path for LIDAR test 1.

6.3 Scanning LIDAR
During experiments conducted at a local quarry, as

shown in Figure 10, range data from the LIDAR in-
stalled on the rover and ground truth locations of the
rover were collected. The rover was operated from the
ROS and executed scripts generated by the operator.

We have collected sets of single 40 degree scans
taken at several way-points along the rover’s path.
Figure 11 compares the test results of using wheel
odometry and using LIDAR localization. It can be
seen that the rover path estimated with LIDAR is
much closer to the ground truth.

In addition, Figure 12(a) and Figure 12(b) show
the aligned scans before and after applying a cor-
rection computed by the ICP algorithm. The im-
provement can be seen qualitatively by inspecting the
aligned scans.

Another LIDAR test result is shown in Figure 13
and it indicates that the pose estimate using LIDAR
data has not improved over the wheel odometry.

The ICP algorithm finds corresponding point pairs
and computes a least squares estimate of the rigid
transformation between them, so the accuracy de-

(a) (b)
Figure 12: Alignment of two LIDAR scans (a) with
wheel odometry (b) after ICP correction.

Figure 13: Estimated rover path for LIDAR test 2.

pends on a number of factors:
1. The initial estimate used to initialize the ICP

algorithm

2. The number, location and orientation of geomet-
rically identifiable features in the scene

3. The size of the overlapping region between con-
secutive scans

Since the initial estimate of the 3D pose is given
by the wheel odometry, which may not be very ac-
curate, and sometimes even erroneous, more work is
needed to investigate in techniques to improve the
initial estimate of the pose.

Moreover, in this experiment, the motion of the
rover was such that the size of the overlapping re-
gions between scans was very small, due to the nar-
row field of view of the LIDAR. Therefore, there are
not enough common elements between the pairs of
scans for establishing a match. By combining several
scans of the scene with the turntable at every rover
location, this will provide a wider field of view for
matching.

The rover platform used in the experiments proved
useful in laboratory and some outdoor tests. How-
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ever, the load of the commercial rangefinder did not
allow the rover to move reliably on soft surfaces such
as gravel in the MarsDome. The size and mass of the
LIDAR required us to lower the rover suspension and
the full range of the LIDAR was restricted by this low
vantage point.
6.4 Discussions

There are various trade-offs between using stereo
and LIDAR based localization systems for planetary
rovers.

An advantage of LIDAR is in the much longer op-
erating range and depth of field as compared with
stereo vision systems. The ability to operate without
reliance on ambient illumination simplifies planning
rover operations. However, LIDAR requires much
longer acquisition time making it difficult to operate
from moving vehicles. The fast scanning mechanisms
inherent in LIDAR require additional power.

The computational cost of processing LIDAR data
is lower than in the case of stereo, which requires an
additional step of finding corresponding regions. The
mapping from internal coordinates systems to 3D is
of similar complexity for both technologies.

The disadvantage of using LIDAR is that it re-
quires more time (seconds to minutes) to scan the
scene than to capture a camera image. For stereo vi-
sion, images can be captured continuously while the
rover is moving. As the changes in the scene are min-
imal between successive frames, the problem of non-
overlapping regions in the scene is not significant.

On the other hand, it is only practical to perform
a LIDAR scan every so often and the rover has to
remain stationary over the course of the scan. In a
typical operation scenario, a scan is performed while
the rover is at the current location. Then it is com-
manded to move to the next location and another
scan is obtained there. Since the motion between
scans is larger, the wheel odometry may contain a
large error and provide a poor initial estimate for the
ICP algorithm. Moreover, significant changes in the
scene could present another set of challenges for mul-
tiple view registration.

7 Conclusions
Conducted experiments have demonstrated opera-

tion of a rover with two different imaging systems:
stereo and LIDAR based. The stereo vision system
has been used for computing visual odometry as well
as reconstructing photo-realistic 3D models. The LI-
DAR based system has been used for rover localiza-
tion by matching 3D scans. Performance of both
localization systems has been compared with wheel
based odometry system and ground truth measure-
ments.

Figure 14: New rover with on-board vision processing
capability.

The experiments have shown that wheel odometry
can be used only for short traversals as the error ac-
cumulates quickly. The accumulation rate depends
on the type of surface and is lower for hard surfaces.
Even for such surfaces, it may reach over 20% of the
distance traveled. We observed orientation errors of
180 degrees for 30m traversals on rough surfaces, such
as MarsDome gravel.

Visual odometry allows estimation of position and
orientation better, as it accumulates distance error
at a rate of several percent. Performance of visual
odometry depends on the presence of visual features
in natural environments. Performance of localization
by matching LIDAR scans depends on the presence of
3D features (rocks, mountains) that can be detected
in successive scans and matched.

We are currently moving the vision processing to
an on-board computer of an ATRV Jr., a larger rover
as shown in Figure 14, which will allow more exten-
sive outdoor tests in the future. This will reduce re-
quirements on transmitting all data (images or LI-
DAR scans) to the GOS computer for processing and
enable more autonomous operations as the position
estimates will be available to the rover. The band-
width requirements and communication delays will
be reduced as well.

Future work includes investigating the synergies
between the stereo and LIDAR technologies by de-
ploying both systems on the larger rover so that they
can complement each other. This will lead to suc-
cessful long range autonomous operations.

Acknowledgements
We would like to thank UTIAS, Tim Barfoot,

Shawn Greene, Nazar Abbas, Chris Jen, Kirk Ha-
rasym and Lucas Szajek for their contributions and
useful discussions. The project was partially funded



                                   55th International Astronautical Congress 2004 - Vancouver, Canada

by Technology Partnerships Canada and the experi-
ments at the quarry were carried out under the MSL
program funded by the Canadian Space Agency.

References
[1] P. Besl and N. McKay. A method for registration

of 3-d shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(2):239–
256, 1992.

[2] M.A. Fischler and R.C. Bolles. Random sam-
ple consensus: a paradigm for model fitting with
application to image analysis and automated
cartography. Commun. Assoc. Comp. Mach.,
24:381–395, 1981.

[3] C.J. Harris and M. Stephens. A combined corner
and edge detector. In Proceedings of 4th Alvey
Vision Conference, pages 147–151, Manchester,
1988.

[4] B. Hoffman, E.T. Baumgartner, T.L. Hunts-
berger, and P.S. Schenker. Improved rover state
estimation in challenging terrain. Autonomous
Robots, 6:113–130, 1999.

[5] P. Jasiobedzki, J. Talbot, and M. Abraham. Fast
3d pose estimation for on-orbit robotics. In Pro-
ceedings of International Symposium on Robotics
(ISR), pages 434–440, Montreal, Canada, May
2000.

[6] S. Lacroix and A. Mallet. Integration of con-
current localization algorithms for a planetary
rover. In Proceedings of International Sym-
posium on Artificial Intelligence and Robotics
and Automation in Space: i-SAIRAS, Cana-
dian Space Agency, St-Hubert, Quebec, Canada,
June 2001.

[7] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil,
S. Fleury, M. Herrb, and R. Chatila. Au-
tonomous rover navigation on unknown terrains:
functions and integration. International Jour-
nal of Robotics Research, 21(10–11):917–942,
October-November 2002.

[8] D.G. Lowe. Object recognition from local scale-
invariant features. In Proceedings of the Seventh
International Conference on Computer Vision
(ICCV’99), pages 1150–1157, Kerkyra, Greece,
September 1999.

[9] A. Mallet, S. Lacroix, and L. Gallo. Posi-
tion estimation in outdoor environment using
pixel tracking and stereovision. In Proceedings
of IEEE International Conference on Robotics
and Automation (ICRA), pages 3519–3524, San
Francisco, April 2000.

[10] H. Ng. Software architecture of the R&D rover
system. Technical Report TN-R&D-2002-050,
MD Robotics, 2002.

[11] K. Nickels and E. Huber. Inertially assisted
stereo tracking for an outdoor rover. In Pro-
ceedings of IEEE International Conference on
Robotics and Automation (ICRA), pages 3078–
3083, Seoul, Korea, May 2001.

[12] C.F. Olson and L.H. Matthies. Maximum likeli-
hood rover localization by matching range maps.
In Proceedings of International Conference on
Robotics and Automation, pages 272–277, Leu-
ven, Belgium, May 1998.

[13] C.F. Olson, L.H. Matthies, M. Schoppers, and
M.W. Maimone. Robust stereo ego-motion for
long distance navigation. In Proceedings of IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR) Volume 2, pages 453–458,
South Carolina, June 2000.

[14] J. Richmond. ROSA ground station: Implemen-
tation of the RTR operator station. Technical
Report TN-R&D-2002-032, MD Robotics, 2002.

[15] G. Roth and E. Wibowo. An efficient volumet-
ric method for building closed triangular meshes
from 3-d image and point data. In Proceed-
ings of Graphics Interface (GI), pages 173–180,
Kelowna, B.C., Canada, 1997.

[16] S. Se, D. Lowe, and J. Little. Mobile robot
localization and mapping with uncertainty us-
ing scale-invariant visual landmarks. Interna-
tional Journal of Robotics Research, 21(8):735–
758, August 2002.

[17] M. Vergauwen, M. Pollefeys, and L. Van Gool.
A stereo-vision system for support of planetary
surface exploration. Machine Vision and Appli-
cations, 14:5–14, 2003.

[18] R. Zabih and J. Woodfill. Non-parametric local
transforms for computing visual correspondence.
In Proceedings of European Conference on Com-
puter Vision (ECCV) Volume 2, pages 151–158,
Stockholm, Sweden, 1994.


