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Abstract- Safety and operational demands require that operators 

of unmanned security and defense vehicles be located at safe 
distances. The capability of creating photo-realistic 3D models using 
on-board sensors on unmanned vehicles will improve the operators’ 
situational awareness. 

Instant Scene Modeler (iSM) is a vision system for generating 
calibrated photo-realistic 3D models of unknown environments 
quickly using stereo image sequences.   

Equipped with iSM, unmanned military vehicles can capture 
stereo images and create 3D models to be sent back to the base station, 
while they explore unknown environments.  Rapid access to 3D 
models will increase the operator situational awareness and allow 
better mission planning and execution, as the models can be 
visualized from different views and used for relative measurements.   

Moreover, iSM also recovers the camera motion, also known as 
the visual odometry.  As wheel odometry error grows over time, this 
can help improve the wheel odometry for better localization. 

Apart from unmanned vehicles, iSM has also been used in 
forensics and mining applications, for creating 3D models of crime 
scenes and of the mine tunnels respectively.   

 
Index Terms—Stereo computer vision, 3D modeling, Localization, 

Unmanned vehicles, Military, Security, Mining, Forensics 
 

1. INTRODUCTION 
The creation of photo-realistic three-dimensional (3D) 

calibrated models of observed scenes has been an active 
research topic for many years. Such 3D models are very 
useful for both visualization and measurements in various 
applications such as planetary rovers, military, mining, 
forensics, archaeology, virtual reality, etc. The capability 
of creating 3D models automatically and quickly is 
particularly beneficial. A hand-held device is desirable in 
many situations as it can be used for scanning by simply 
moving it freely without any constraint on the motion. It 
can also be mounted on unmanned vehicles to create 3D 
models while it is exploring the environment.  

We have developed the instant Scene Modeler (iSM) 
that is capable of quickly generating calibrated photo-
realistic colour 3D models of unknown environments from 
a mobile stereo camera [1] .   The system works in a hand-
held mode where it can process image sequences and 
automatically stitch them together in 3D with no prior 
knowledge of the environment.  The resulting 3D models 
can be visualized from different views and metric 
measurements can be performed on the models.  

We have implemented a proof-of-concept iSM payload 
on an autonomous Unmanned Ground Vehicle (UGV) to 
provide photo-realistic 3D modeling and measurements.  

While the UGV autonomously explores the environment, 
the iSM payload will generate a photo-realistic 3D model 
of the environment which can be sent back wirelessly to 
the base station for mission reconnaissance.   

From a remote location, the operator will have near 
real-time access to the 3D model of the unknown 
environment.  The metrically accurate model may be 
augmented with multiple forms of additional sensory 
information, potentially including IR, or thermal imagery.  
Furthermore, as operationally needed, the iSM 3D 
modeling payload can be removed from the UGV and used 
in a hand-held mode by the operator. 

Moreover, iSM can be used in forensics to create 3D 
models of the crime scenes, and it can be used in mining to 
create 3D models of the mine tunnels.    
 

2. PREVIOUS WORK 
3D modeling has been a topic of intensive research for 

the last few decades. This section presents a brief overview 
of the main technologies: 3D acquisition, view registration. 
model construction, and a few 3D modeling systems 
applicable to unmanned vehicles. 
 
2.1 3D Acquisition 

The main approaches for depth acquisition include 
structured light, laser scanning and stereo. The structured 
light approach uses a projector to illuminate the object with 
patterns and recovers the 3D shape from a monocular 
image. It is effective for scanning objects but do not work 
well for scanning environments due to their limited range. 

Blais [2]  has recently reviewed the development of 3D 
laser imaging for the past 20 years. Auto-synchronous laser 
scanners can be used for both objects and environments 
due to their long depth of field and high accuracy at close 
range. Time-of-flight scanning laser rangefinders measure 
the time it takes for the light to travel to the object and 
back. Laser range scanners have to remain stationary 
during data acquisition and they are large, heavy, and tend 
to be expensive. 

Stereo imaging is a passive technique and can recover 
the structure of the environment by matching features 
detected in multiple images of the same scene. It is very 
computationally intensive as the 3D data is computed from 
the images. The depth data could be noiser than the other 
approaches, as it relies on the natural texture on the surface 
and ambient lighting. Unlike laser scanners, cameras can 
capture complete images in microseconds, hence they can 
be used as mobile sensors or operate in dynamic 
environments. The cost, size, mass and power requirements 
of stereo cameras are much lower than those of scanning 
rangefinders. 
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2.2 View Registration 
When multiple scans are obtained, they need to be 

registered together to build the 3D model. Registration can 
be carried out with a separate device that tracks the sensor 
or object position, or by matching the data sets manually or 
automatically.  

The most common algorithm for automatic 3D data 
registration is Iterative Closest Point (ICP) algorithm [3] , 
which iteratively minimizes the distances between the 
overlapping regions of two sets of 3D points or surfaces. 
For vision systems, fiducials can be placed in the scene and 
the camera pose can be estimated by tracking these 
markers [4] . However, this involves changes to the 
environment and it is not possible for some applications. 
The capability to track natural features in the scene to 
recover camera motion is much preferred. 
 
2.3 Model Construction 

Registered 3D data sets contain redundant overlapping 
measurements and measurement noise. They contain often 
too much detail for efficient visualization and 
manipulation, and they need to be converted to other 
formats. One approach involves constructing geometrical 
models, e.g., 3D surfaces or volumes. Triangular meshes 
that consist of a large number of triangles are often used as 
they can represent complex surfaces. 

The models can be obtained by creating surface meshes 
from individual views first and then stitching them together 
[5] . If there is a significant overlap between the individual 
views, this approach is rather inefficient due to the need for 
repeated stitching. The volumetric approach is more 
efficient as the 3D points are accumulated into voxel grid 
structures first. Only one triangular mesh is created for all 
the measurements using an iso-surface extraction 
algorithm, such as the marching cubes [6] . After the 
triangular mesh is generated, texture images are mapped to 
provide the photo-realism [7] . 
 
2.4 3D Modeling Systems 

3D modeling systems have been developed for city 
scanning or the large-scale reconstruction of urban scenes.  
Many of them use laser sensors, which can provide 
accurate 3D measurements directly at long ranges.  We 
will focus on passive camera systems whose advantages 
have been described above.  However, some of those 
systems require manual operation [8] [9]  and hence, it is 
labour-intensive to create the models.  Some other 
automatic 3D modeling systems simplify the scene as 
geometric primitives such as planes and polyhedra [10]  or 
use generative building models [11] .  Therefore, their 
application is limited to man-made environments, 
buildings and city blocks.   

Military UGV application requires automatic 3D 
reconstruction and that the system works in all types of 
environments including outdoor natural terrains and caves.  
Pollefeys et al. [12]  and Nister [13]  presented systems 
which create 3D surface models from a sequence of images 
taken with a hand-held video camera. The camera motion 

is recovered by matching corner features in the image 
sequence.  Dense stereo matching is carried out between 
the successive frames. The input images are used as 
surface texture to produce photo-realistic 3D models. 
Unlike stereo approaches, monocular approaches only 
output a scaled version of the original object.   Moreover, it 
requires a long processing time.   

Batch processing approaches such as bundle adjustment 
[14]  may produce better 3D reconstruction as information 
from all the camera frames are optimized simultaneously.  
However, they are not suitable for unmanned vehicles 
which require real-time camera ego-motion estimation.  

The objective of the ongoing DARPA Urbanscape 
project is to develop a real-time data collection and 
processing system for automatic geo-registered 3D 
reconstruction of urban scenes from video data [15] .  
Promising results were shown but it is far from being real-
time.  Multiple video streams as well as GPS and INS 
measurements are collected to reconstruct photo-realistic 
3D models and place them in geo-registered coordinates.   
 

3. INSTANT SCENE MODELER 

iSM automatically creates 3D models from a mobile 
hand-held stereo camera.  It computes the 3D data, 
estimates the camera motion and registers successive 
frames together.  The user points the camera at a scene of 
interest and the system automatically creates a photo-
realistic 3D calibrated model within minutes.  Part of the 
processing includes computation of camera motion, which 
can be used for vehicle localization. 

Figure 1 shows the architecture of the iSM system.  
Images are captured by the stereo camera and dense stereo 
disparity is computed for each stereo pair to obtain 3D data 
using known camera calibration.  The system does not 
require any external sensors for computing the camera 
motion as it automatically extracts and tracks natural tie 
points in the images.  The recovered camera motion is used 
to integrate 3D data obtained from the sequences.  The 3D 
data is then converted to surface meshes, which are 
augmented by mapping texture from the colour images.  
The algorithms are described further in the next sections.    
 
3.1 Tie Point Extraction 

The system does not require any external sensors for 
computing the camera motion as it automatically extracts 
and tracks natural tie points in the images.  We use a high 
level set of natural visual features called Scale Invariant 
Feature Transform (SIFT) as the tie points to compute the 
camera motion. SIFT was developed by Lowe [17]  for 
image feature generation in object recognition applications.  

The SIFT features are invariant to image translation, 
scaling, rotation, and partially invariant to illumination 
changes and to affine or 3D projections. These 
characteristics make them suitable as landmarks for robust 
matching when the cameras are moving around in an 
environment.  The SIFT features are highly distinctive as 
each feature contains a 128-element local image descriptor. 
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Figure 1 iSM system architecture 

 
 Harris Corners SIFT Features 

Algorithm complexity Easy to detect Complex detection algorithm 
Localization accuracy Sub-pixel Sub-pixel 

Scales Single or multiple scales Multi-scale representation 
Description Image windows Specific local image feature vector 

Correspondence Hard, many mismatches Easy, few mismatches 
Table 1 Comparison between Harris corners and SIFT features 

 
Previous approaches to feature detection, such as the 

widely used Harris corner detector [18] , are sensitive to 
the scale of an image and therefore are less suitable for 
building feature databases that can be matched from a 
range of camera positions.   A comparison between Harris 
corners and SIFT features is shown in Table 1. 
 
3.2 Tie Points Stereo 

Using the known stereo camera geometry, the SIFT 
features in the left and right images are matched using the 
following criteria: epipolar constraint, disparity constraint, 
orientation constraint, scale constraint, local feature vector 
constraint and unique match constraint [19] . The subpixel 
disparity d for each matched feature and hence the 3D 
coordinates (X, Y, Z) are also computed: 
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where (r0,c0) are the image centre coordinates, I is the 
interocular distance and f is the focal length.   

The stereo matched SIFT features in a lab scene are 
shown in Figure 2 (left), where the length of the line is 
proportional to the disparity.  We can see that all the 
matches are consistent and correct.  Typically, we obtain 
hundreds of SIFT 3D landmarks. 
 
3.3 Camera Ego-motion Estimation 

We recover the 6 degrees of freedom (dof) camera ego-
motion when the camera moves freely in the hand-held 
mode. We employ a Simultaneous Localization And 
Mapping (SLAM) approach that uses the SIFT 3D 
landmarks to localize and simultaneously build a database 

map [19] . Instead of frame to frame matching, we match 
the SIFT features at each frame with the database to reduce 
error accumulation. Olson et al. [20]  reported a 27.7% 
reduction in rover navigation error when multi-frame 
tracking is used, rather than considering each pair of 
frames separately. 

 

 
Figure 2 Stereo matched SIFT features (left) and SIFT features that are 
matched to the database (right) 

As the SIFT features are highly distinctive, they can be 
matched with very few false matches. This allows finding 
the camera movement that brings each projected SIFT 
landmark into the best alignment with its matching 
observed feature.  To minimize the errors between the 
projected image coordinates and the observed image 
coordinates, we employ a weighted least-squares procedure 
to compute this 6 dof camera ego-motion. 

Rather than solving directly for the 6 dof vector of 
camera ego-motion, Newton’s method computes a vector 
of corrections x to be subtracted from the current estimate.  
No prediction model is used for the hand-held mode, and 
the previous camera pose is used as the initial estimate for 
the current frame.   
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Given a vector of error measurements e between the 
expected projection of the SIFT landmarks and the 
matched image positions, we would like to solve for an x 
that would eliminate this error: 

WeWJx =  
where J is the Jacobian matrix jiji xeJ ∂∂= /,  and W is a 
diagonal matrix consisting of the inverse of the standard 
deviation of the measurements, assuming that landmarks 
are independent.  As there are often more measurements 
than parameter, a weighted least-squares minimization is 
carried out taking into account the feature uncertainty.  

The good feature matching quality implies a very high 
percentage of inliers, therefore outliers are simply 
eliminated by discarding features with significant least- 
squares errors.  The minimization is repeated with the 
remainder matches to obtain the new correction terms. 

Figure 2 (right) shows the SIFT features that are 
matched to the database.  The line connecting the previous 
position to the current position is analogous to optical flow 
and we can see that all matches are consistent and correct. 
 
3.4 Dense 3D Computation 

Dense stereo disparity is computed from the left and 
right images using a correlation based algorithm to obtain 
3D data. As with other stereo algorithms, the quality 
(accuracy, coverage and number of outliers) of the depth 
data depends on the presence of texture in the images. 

3D data is computed in the camera reference frame and 
is transformed using the camera ego-motion estimated for 
this frame. Typically, the initial camera pose is used as the 
reference. 

 
3.5 Mesh Creation 

Using all 3D points obtained from the stereo processing 
is not efficient as there are a lot of redundant 
measurements, and the data may contain noise and missing 
regions. Representing 3D data as a triangular mesh reduces 
the amount of data when multiple sets of 3D points are 
combined. Furthermore, creating surface meshes fills up 
small holes and eliminates outliers, resulting in smoother 
and more realistic reconstructions. 

To generate triangular meshes as 3D models, we 
employ a voxel-based method [6] , which accumulates 3D 
points into voxels at each frame with their associated 
normals. It creates a mesh using all the 3D points, fills up 
holes and works well for data with significant overlap. It 
takes a few seconds to construct the triangular mesh at the 
end, which is dependent on the data size and the voxel 
resolution. 

 
3.6 Texture Mapping 

The photo-realistic appearance of the reconstructed 
scene is created by mapping camera images as texture. 
Such surfaces are more visually appealing and easier to 
interpret as they provide additional surface details. Colour 
images from the stereo camera are used for texture 
mapping. As each triangle may be observed in multiple 

images, the algorithm needs to select a texture image for 
each triangle. To reduce the appearance of seam lines 
between triangles, we select the texture images that can 
cover the most number of triangles. The model will 
therefore need the minimal number of texture images, and 
hence this allows faster model loading and lower storage 
requirement. 

 
4. IMPLEMENTATIONS 

We have developed several iSM prototype systems: 
• Hand-held 
• Vehicle-mounted 
• Motorized 
 

4.1 Hand-held system 
The hand-held version of iSM is shown in Figure 3.  

The main hardware components of iSM are a stereo 
camera and a computer.  We currently use a colour 
Bumblebee stereo camera from Point Grey Research 
(PGR) [16] .  It is a firewire camera that can capture up to 
15 frames per second.  iSM 3D processing software can 
run on any PC equipped with a firewire interface. 
 

 

Figure 3  Hand held iSM 

In one of the experiments, we modeled a façade of a 
house.  The camera was moved freely pointing at different 
portions of the house and about 30 seconds of 640x480 
resolution stereo images were captured.  Figure 4 shows 
two of the images from a sequence.  iSM processed these 
images automatically and created a photo-realistic 3D 
model in around 5 minutes on a Pentium IV 2.4GHz 
laptop. 

 

  
Figure 4 Two images from the house sequence 

 
The output 3D model is stored in the VRML (Virtual 

Reality Modeling Language) format. The user can navigate 
in the 3D model, and view it from any direction and 
distance.  Figure 5 shows two views of the 3D model. We 
can see that iSM can reconstruct the overall 3D model by 
integrating all the input images, each of which captured 
with a limited field of view. 
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More advanced visualization and user interaction is 
provided in our visualization GUI (Graphical User 
Interface). As the 3D model is calibrated, the user can 
perform measurements (such as distance, angle, area) on 
the 3D model and the user can also annotate the model, as 
shown in Figure 6 (left). The camera trajectory recovered 
from the ego-motion estimation can be visualized, as 
shown in Figure 6 (right). The red, green, blue axes 
correspond to the X, Y, Z axes of the camera respectively.  
Moreover, the GUI also provides other features such as 
movie creation using trajectories defined with keyframes, 
model alignment and the export of 3D models into DXF 
format. 
 

   
Figure 5 Two views of the 3D model created by iSM for the house scene 

  
Figure 6 iSM visualization GUI showing the annotation and measurement 
(left) and the recovered camera trajectory (right)  

 
4.2 Vehicle-mounted system 

For autonomous vehicles and planetary rovers, the 
creation of 3D terrain models of the environment is useful 
for visualization and path planning [21] .  Apart from the 
3D model, iSM also computes the camera motion (this 
estimation is also known as visual odometry) which allows 
the vehicles to localize themselves more accurately, as 
wheel odometry is prone to errors due to wheel slippage  
[22] .  iSM can be deployed on both tele-operated and 
autonomous vehicles to create 3D models while the 
vehicles traverse in unknown environments. 

One of the MDA autonomous test vehicles is shown in 
Figure 7.  The chassis of this rover is an iRobot ATRVJr 
with a custom vision system [21] .  The stereo camera was 
constructed using a pair of Sony DFW-X700 cameras, 
mounted on a rigid bar and affixed to a pan-tilt unit.  The 
camera field of view is approximately 45 degrees 
horizontal and 35 degrees vertical.  There are currently two 
computers on board, a dual Pentium III 1 GHz with 1 GB 
of RAM (inside the red box) and a dedicated vision 
computer consisting of a Pentium M 1.8 GHz with 1 GB of 
RAM.  The vision computer also houses our hardware 
accelerated vision processing boards, a Tyzx DeepSea2 

[23]  for dense stereo calculations and an AlphaData 
ADM-XRC board with a Virtex II Xilinx FPGA (Field 
Programmable Gate Array) running our implementation of 
SIFT feature extraction [21] .  There are various other 
sensors onboard as well: sonar rangefinders, SICK laser 
rangefinder, DGPS, compass, inertial measurement unit 
and inclinometer. 

 

 

Figure 7 Vehicle mounted iSM 

iSM has been tested on this testbed traversing at a 
desert in Nevada. Figure 8 (left) shows an image from a 
sequence captured by the vehicle during traversal of 40m 
and Figure 8 (right) shows the reconstructed 3D terrain 
model with a virtual vehicle inserted for visualization.  
Figure 9 shows the recovered camera trajectory without 
using wheel odometry.  Despite the jerky motion, iSM is 
able to compute the camera motion and create a photo-
realistic 3D model from the input stereo image sequence. 

 
Figure 8 An image from a sequence taken by the MDA Autonomous 
Vehicle at a desert in Nevada (left) and the reconstructed 3D model with 
the vehicle model inserted for visualization (right). 

 
Figure 9 Camera trajectory computed by iSM for the Nevada dataset 
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The on-board FPGA computes SIFT features at rates of 
7 Hz for 1024x768 resolution images. This allows visual 
odometry to estimate the vehicle location in real-time. 
Unmanned and autonomous vehicles often rely on wheel 
odometry and inertial sensing to estimate their locations in 
the absence of GPS signals. Wheel odometry incurs 
significant errors due to wheel slippage on soft terrain and 
inertial sensors accumulate error over time. A comparison 
of visual odometry with wheel odometry and differential 
GPS for a 120m test run is shown in Figure 10.  It can be 
seen that the visual odometry (blue) is very close to the 
differential GPS (green) while the wheel odometry (red) 
drifts off quickly.  When operating on vehicles, the ego-
motion estimates are fused with the measurements from 
wheel odometry and inertial sensors. 
 

 
Figure 10 Comparison of errors incurred by wheel and visual odometry 

4.3 Motorized system 
The motorized tripod-mounted version of the system is 

used when automatic image acquisition and full scene 
coverage are required. A commercial system for modeling 
underground mines is shown in Figure 11. A stereo camera 
with a longer baseline allows imaging of objects at longer 
distances and an integrated camera light provides the 
necessary illumination. The camera head is mounted on a 
motorized pan-tilt-unit and moves to pre-programmed 
positions, recording images and telemetry. 
 

 

Figure 11 instant Mine Modeler – a motorized version of iSM 

The motion estimation module uses telemetry as an 
initial guess for the camera pose – which may be refined 
through the vision based processing described above. Two 

views of a reconstructed underground tunnel are shown in 
Figure 12. Multiple scans have been acquired from 
different positions and registered together using the 
overlapping sections. Additional information on the 
commercial system for mining is provided in Section 5.3. 
 

  
Figure 12 Reconstruction of an underground tunnel (tunnel view and top-
down view) 

 
5. MODELING ENHANCEMENTS 

5.1 Auto-Referencing 
When a continuous scan is not possible but separate 

scans are collected, we will create multiple 3D models. As 
each sequence starts at an unknown location and hence has 
a different origin, we need to align the multiple meshes to 
merge them together. We refer this process of aligning 
multiple meshes automatically as auto-referencing [1] . 
This capability is useful for creating 3D model for larger 
environments, as it can automatically combine individual 
3D models that cover smaller environments. 

We use highly distinctive SIFT features during 
automatic alignment, as each 3D model has an associated 
SIFT database map. The problem is defined as, given two 
SIFT database maps without prior information about their 
relative position, estimate their 6 dof alignment, provided 
that there are sufficient overlapping features between them. 

Map alignment using SIFT features has been proposed 
in [24] , but it is limited to 3 dof as the mobile robot can 
only undergo more or less planar motion. For iSM, the user 
can start the camera at any position and hence this is 
extended to 6 dof. Instead of the Hough Transform 
approach, we employ a RANSAC approach which is more 
efficient, especially with the higher dimensions. 

The algorithm involves the following steps: 
• Create a list of tentative matches. For each SIFT 

feature in the second database, find the feature in the first 
database which matches best, in terms of the SIFT local 
image vector 

• Randomly select 3 tentative matches from the list and 
compute the 6 dof alignment parameters from them 

• Seek support by checking all the tentative matches that 
support this particular alignment 

• Repeat this random selection, alignment computation 
and support seeking process many times. The alignment 
with most support is our hypothesis. 

• Proceed with a least-squares minimization for the 
inliers which support this hypothesis and obtain a better 
estimate for the alignment  

Se & Jasiobedzki: Stereo-Vision Based 3D Modeling and Localization for Unmanned Vehicles  51



 

The probability of a good sample τ for RANSAC [25]  
is given by: 

τ = 1− (1 − (1 − ε)p)m 
where ε is the contamination ratio (ratio of false matches to 
total matches), p is the sample size and m is the number of 
samples required. In this case, with p = 3, ε = 0.8, τ = 99%, 
m = 573. That is, for 99% probability of a good sample, we 
need to sample at least 573 times. The algorithm works 
well if there is sufficient number of overlapping SIFT 
features. 

Once we have found the alignment based on the SIFT 
database maps, we can put the two 3D models together to 
obtain a more complete reconstruction of the environment.  

An example with two separate image sequences 
captured in the lab and two 3D models with overlapping 
regions is shown in Figure 13. By applying the auto-
referencing algorithm, the 6 dof alignment has been 
recovered based on the two SIFT database maps and the 
two models can be put together automatically.  

Figure 13 (top) shows the two individual 3D models. 
Figure 13 (bottom) shows the aligned model after auto-
referencing which took less than 3 seconds on a Pentium 
IV 2.8 GHz processor. It can be seen that the correct 
alignment is obtained without any user interaction. ICP is 
commonly used for aligning multiple sets of 3D laser 
scans, but it requires an initial estimate of the relative 
alignment, or user interaction is needed to establish several 
correspondences. The developed SIFT-based auto-
referencing algorithm aligns two 3D models automatically;  
multiple 3D models can be aligned in an incremental or 
pair-wise fashion. 

 
 

   
 

 
Figure 13 Two 3D models with some overlap but unknown alignment. 
(top) and the aligned model after auto-referencing (bottom) 

5.2 Pattern Projector 
Indoor man-made environments may not have much 

texture for high coverage dense stereo matching. In order 
to obtain better 3D models, we have built a flash pattern 
projector that projects a random dot pattern onto the scene, 
as an optional add-on to the stereo camera [1] . The 
projector is synchronized with the stereo camera and the 
projector trigger is controlled via software. 

SIFT features found in the flash image should not be 
used to compute the camera motion, as the same pattern is 
projected all the time. Therefore, we interleave normal 
images with a flash image every 10 frames. The ego-
motion estimation for the normal images is the same as 
before, but the camera location for the flash images are 
interpolated from the SIFT-based ego-motion of the 
normal images. 

Figure 14 shows an example of a normal image and a 
flash image showing the random dot pattern of an indoor 
scene. Figure 15 shows the screenshots of two 3D models, 
one without the flash and one with the flash. The black 
regions indicate areas where there is not enough texture to 
recover the depth. It can be seen that the coverage of the 
3D model is increased substantially with the pattern 
projector. 

 

  
Figure 14 Sample image without flash (left) and with flash (right) 

  
Figure 15 Screenshots of 3D model without (left) and with the pattern 
projector (right) 

 
6. APPLICATIONS 

5.1 Military 
Special Operations Forces (SOF) are often required to 

enter unknown and potentially hostile environments with 
no prior knowledge of the layout or possible deployment of 
hostile forces.  Lacking situational awareness prior to 
entry, the SOF can be taken by surprise by hostile forces, 
explosives, or other threats.  The survivability and 
effectiveness of the SOF will be greatly enhanced by 
remotely acquiring knowledge of the environment’s layout.  
The use of UGVs keeps the SOF personnel out of danger 
and allows them to carry out other critical activities while 
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the UGV is autonomously modeling the environment.  
With the acquired knowledge of the environment, the SOF 
will be able to carry out more strategic, targeted and safe 
operations. 

iRobot PackBot [26]  is a highly-robust, all-weather, 
all-terrain, man-portable UGV platform, equipped with two 
main treads for locomotion and two articulated flippers 
with treads to climb over obstacles.  PackBot can travel at 
sustained speeds of up to 4.5 mph.  It is 27 inches long, 16 
inches wide, and 7 inches tall, and weighs 40 pounds.  All 
electronics including the on-board computer are inside a 
compact, hardened enclosure. Each PackBot can withstand 
a 400G impact, the equivalent of being dropped from a 
second storey window onto concrete.  Each PackBot is also 
waterproof to 3 metres.   

PackBot is at home in both wilderness and urban 
environments.  In the wilderness, PackBot can drive 
through fields and woods, over rocks, sand, and gravel, and 
through water and mud.  In the city, PackBot can drive on 
asphalt and concrete, climb over curbs, and climb up and 
down stairs while carrying a payload.   

While the PackBot is tele-operated, autonomous urban 
navigation capabilities have been developed in the 
Wayfarer project [27] .  A modular navigation payload has 
been developed that incorporates a 3D stereo vision 
system, a 360-degree planar LIDAR, GPS, INS, compass, 
and odometry.  This payload can be attached to any 
PackBot to provide the robot with the capability to perform 
autonomous urban reconnaissance missions. The PackBot 
with Wayfarer technology will be able to scout unknown 
territory and send back occupancy maps along with video 
image sequences.  

The Wayfarer navigation payload includes software 
components for obstacle avoidance, building perimeter and 
urban street following, and map-building. The obstacle 
avoidance system enables the PackBot to avoid collisions 
with a wide range of obstacles in both outdoor and indoor 
environments. This system combines 360-degree planar 
LIDAR range data with 3D obstacle detection using stereo 
vision.  A real-time Hough transform is used to detect 
linear features in the range data that correspond to building 
walls and street orientations. The LIDAR range data builds 
an occupancy grid map of the robot’s surroundings in real-
time. Data is transmitted via UDP over wireless Ethernet to 
an OpenGL-based Operator Control Unit (OCU) that 
displays this information graphically and in real-time. 

We have mounted iSM as a proof-of-concept payload 
on the Wayfarer PackBot, as shown in Figure 16.  The 
payload consisted of a stereo camera and a compact laptop 
computer (Toshiba Libretto with 1.1 GHz processor). The 
stereo camera with the MDA logo belonged to the iSM 
payload while the second one was part of Wayfarer’s 
sensor package.  The iSM payload camera was pointed 
slightly to the right side during the test runs, so that it 
could get a better view of the building for 3D 
reconstruction, rather than capturing the road ahead only. 

 
Figure 16 A proof-of-concept iSM 3D modeling payload mounted on the 
iRobot Wayfarer PackBot.  The payload consists of a stereo camera (with 
the MDA logo) and a compact laptop at the back. 

  There was no data interface between the iSM payload 
computer and the PackBot computer.  The stereo images 
were captured and processed by the payload computer on  
the PackBot.  A separate control computer was used for 
communication with the iSM payload and 3D model 
visualization. 

Due to the limited payload computing resources and the 
relatively high speed of Wayfarer PackBot, the images 
were captured with a lower resolution of 320x240 pixels 
and at 7Hz.  During a test run, the Wayfarer PackBot 
autonomously navigated around the building in the 
perimeter following mode while iSM was capturing 
images.  At the end of the test run, iSM started processing 
the stereo images and created a photo-realistic 3D model.   

Figure 17 shows selected images captured by the iSM 
payload for test run 1. The traverse was around 20m and 
took around 1 minute.  The processing time was under 5 
minutes on the payload computer.  Screenshots of the 
resulting 3D model from different views are shown in 
Figure 18, together with the recovered camera trajectory.   

 
 

    
Figure 17 Selected images from test run 1 

Another test was carried out in which the Wayfarer 
PackBot turns around the corner of the building.  Figure 19 
shows some input images captured by the iSM payload for 
test run 2.  Screenshots of the resulting 3D model from 
different views are shown in Figure 20.  The total traverse 
is around 40m and takes around 3 minutes.  The processing 
time is less than 10 minutes.    
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Figure 18 Different views of the resulting 3D models with recovered 
trajectory highlighted for test run 1 

 

    

   
Figure 19 Selected images from test run 2 

Key capabilities of a mobile robot system are 
simultaneous localization and building maps of visited 
environments. Experimental results show that the iSM 
payload can complement the Wayfarer PackBot in both 
aspects. While the Wayfarer PackBot is autonomously 
following the building perimeters and avoiding obstacles, it 
builds 2D occupancy grid maps from the laser sensor, 
whereas iSM is capable of creating photo-realistic 3D 
models.  The photo-realistic 3D models provide better 
situational awareness than 2D occupancy grid maps and 
can be used for change detection.     

The Wayfarer PackBot uses wheel odometry for 
localization and to build the occupancy grid map.  As 
wheel odometry is prone to error, an additional INS/GPS 

unit is used to improve localization [28] .  iSM recovers the 
camera motion, also known as the visual odometry, which 
can be fused with the wheel odometry for better 
localization.  However, as the iSM processing was not 
done in real-time (real-time visual odometry requires the 
SIFT-FPGA processor described in Section 4.2) and there 
was no communication between iSM and PackBot 
computers, the PackBot could not use the visual odometry 
produced by iSM. 

 
 

  

 
Figure 20 Different views of the resulting 3D models with recovered 
trajectory highlighted for test run 2 

As the effectiveness of the SOF will be greatly 
enhanced by having a layout of the environment, current 
military operations of UGVs in urban warfare threats 
involve the operator hand-sketching the environment from 
live video feed.  iSM eliminates the need for an additional 
operator as the 3D model is generated automatically.  The 
safety of the SOF will be increased through the remote 
operation and monitoring from a secure stand-off location.  
As a result, overall mission effectiveness, success, and 
safety will be greatly increased. 

 
5.2 Security and Forensics 

Documenting crime scenes is a tedious process that 
requires the investigators to record vast amounts of data 
using video and still cameras, measuring devices, taking 
samples and recording observation. All this data must be 
later stored in structured manner for easy access during 
investigations. 

With iSM, investigators can create a 3D model of the 
crime scene quickly without much disturbance to the crime 
scene [29] . Unlike traditional 2D imaging, measurements 
can be performed on the 3D model. As our 3D model is 
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fully calibrated, there is no need to measure a reference 
object in the scene to scale the model. The police can also 
perform additional measurements they may have missed 
using the 3D model after the crime scene is released. 

The 3D model can be shown to other officers who have 
not been to the crime scene. Apart from helping the police 
investigation, the 3D model can potentially be shown in 
court so that the judge and the jury can understand the 
crime scene better. 

 

  
Figure 21 Two images from the mock crime scene sequence. 

Figure 21 shows selected images obtained with the 
handheld camera at a mock crime scene set up in our lab, 
while the operator was moving the camera around in the 
scene. The 640x480 image sequence was captured 
approximately within 1 minute and the processing took 
around 10 minutes. Figure 22 shows the 3D model 
generated from the input sequence.  

 
Figure 22 Reconstructed 3D model of the mock crime scene. 

Investigating crime scenes where Chemical, Biological, 
Radiological and Nuclear (CBRN) agents have been 
deployed poses great dangers to first responders.  Any 
prior decontamination of a crime scene may result in 
destruction of potentially vital evidence. Technologies that 
reduce the need to enter the scene or to reduce exposure of 
first responders are essential. 

In an on-going project, we are developing a CBRN 
Crime Scene Modeler (C2SM), a 3D modeling system for 
CBRN contaminated scenes, based on iSM. C2SM uses 
stereo cameras to create 3D models and interfaces with a 
Directional Gamma Ray Probe, Chemical Agent Monitor 
and an Infra Red camera [30] . The resulting 3D models 
will be augmented with readings from sensors indicating 
the threat level and distribution of contaminants in 3D.  

C2SM operates either as a hand-held device or in a 
robot mode. In the hand-held mode, the operator uses the 
system similarly to a video camera to acquire the images 
and data. In the robot mode, C2SM operates on board of a 
mobile platform as shown in Figure 23 and is controlled 

remotely from an operator station. The data is processed in 
an embedded computer and models are available within 
minutes. The multi-modal models are visualized in 3D and 
may be augmented with annotations and additional 
information. All this information is stored in an event 
database and transferred to a command centre. 
 

 
Figure 23 C2SM prototype for CBRN crime scene investigation mounted 
on a mobile robot 

 
5.3 Mining 

Photo-realistic 3D models are useful for survey and 
geology in underground mining. Currently, mining 
companies can only survey the mine from time to time to 
keep track of the mine advance due to the cost of surveys. 
With our 3D models, the mine map can be updated after 
each daily drill/blast/ore removal cycle to minimize any 
deviation from the plan. In addition, the 3D models can 
also allow the mining companies to monitor how much ore 
is taken at each blast. 

Geological mapping are typically not carried out by 
geologists at every drill cycle as the cost would be 
prohibitive. This does not allow monitoring of the ore 
content or adapting the mine exploration plan to local 
conditions. As our system can be operated by a crew that is 
already on site, the images can be collected daily and 3D 
models may be sent to geologists on the surface.  

We have developed a version of the system specifically 
for underground mining – instant Mine Modeler (iMM) 
shown in Figure 11. iMM was tested  in several 
underground mines. Mine surfaces provide rich features for 
both feature extraction and dense stereo matching.  Figure 
24 shows a 3D model reconstructed at an underground 
mine cavity using the motorized mode. Geological 
annotation has been overlaid on the 3D model and these 
3D geological features can be exported into mine 
management software to model the ore body better.   

All the 3D models need to be transformed into the mine 
coordinates, in order to be placed in the right location of 
the overall mine map. Accurate registration with the mine 
coordinate system is performed by measuring the camera 
location relative to survey markers for each scan. A laser 
rangefinder integrated in the iMM head provides highly 
accurate range measurements for distances up to 100m.    
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Past and recent as-built models can be linked together 
and used for planning the exploration and monitoring the 
tunnel advancement.  Figure 25 shows consecutive scans 
of an advancing mine face.  Volume between consecutive 
faces can be calculated to estimate how much ore has been 
taken at each round. 

 

 
Figure 24 3D model of underground mine overlaid with geological 
annotation 

 
Figure 25 As-built mine model showing tunnel advancement 

 
7. CONCLUSIONS 

In this paper, we have presented a family of 3D 
modeling systems based on the instant Scene Modeler 
(iSM).  The approach relies on the processing of image 
sequences from mobile stereo cameras and estimating 
camera motion and range data automatically. The 
estimated camera motion is used to register multiple range 
data sets and to create photo-realistic 3D models. When 
implemented on dedicated hardware (FPGA), the motion is 
estimated at several frames per second allowing it to be 
used for visual odometry and vehicle localization. It 
creates photo-realistic 3D calibrated models of 
environments automatically within minutes.   

We have developed three versions of iSM for various 
applications. The motorized version is particularly suitable 
for mining as it allows automatic image acquisition, full 
scene coverage and registration within mine coordinate 
system.  The models are annotated with 3D geological 
features that enable ore body mapping and provide daily 
as-built update of the mine map. A rugged commercial 
production system (iMM) has recently been developed for 
creating 3D models at underground mines.  Future work 
includes generating 3D models while the mining vehicle is 
traversing in the mine. 

The hand-held version offers flexibility for forensic 
investigators. Photo-realistic reconstruction of crime 
scenes combined with high resolution images and operator 
annotations helps collecting and storing detailed evidence 
collected during investigations.   Current work focuses on 
adaptation of the 3D modeling technologies for 
investigating scenes contaminated with CBRN agents.  The 
system deployed on a remotely-controlled mobile platform 
reduces exposure of first responders to dangerous agents. 
Incorporation of chemical and gamma radiation detectors 
allows mapping of contamination levels and provides 
additional situational awareness to the first responders. 

The vehicle-mounted version can be used for military 
application on-board an UGV. The SOF situational 
awareness before entering an unknown environment will 
be greatly enhanced through the acquisition of a high-
fidelity, photo-realistic 3D model.   Future work includes 
better integration of the iSM payload with the PackBot.  
Interfacing the payload and the PackBot will allow iSM to 
make use of PackBot wheel odometry, improve it robustly 
with visual information, and send the new estimated 
.location to the robot controller.  iSM processing can be 
optimized to provide online visual odometry by means of 
software and hardware acceleration.  

Apart from ground vehicles, iSM can potentially be 
deployed on UAV (Unmanned Aerial Vehicles) and UUV 
(Unmanned Underwater Vehicles) for 3D modeling. 

In general, using images alone for motion estimation 
causes accumulation of error over long sequences. It can be 
noticed that the building wall looks slightly curved in 
Figure 20.  Backward correction techniques for map 
building are considered to improve the model correctness 
for long sequences [24] . Integration with global sensors 
such as Global Positioning System or radio beacons will 
allow resetting the error at selected locations where such 
data will be available.     
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