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1. Introduction

Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation 
associated with voluntary and involuntary subject head motion during tomographic scans (Fulton et al 2002, 
Kyme et al 2003, 2012, Montgomery et al 2006, Yu et al 2007, Jin et al 2013, Kim et al 2015). Interest in these 
methods has grown in parallel with the steadily improving spatial resolution of modalities such as positron 
emission tomography (PET), single photon emission computed tomography (SPECT) and computed 
tomography (CT) since the improved resolution increases the sensitivity to motion artifacts. Interestingly, 
however, motion compensated brain imaging protocols have not found their way into routine clinical use. We 
postulate that a key reason for this poor translation of the science is the lack of an accurate and practical method 
for head motion tracking.

A Z Kyme et al

Printed in the UK

AABD48

PHMBA7

© 2018 Institute of Physics and Engineering in Medicine

2018

00

Phys. Med. Biol.

PMB

1361-6560

10.1088/1361-6560/aabd48

00

1

17

Physics in Medicine & Biology

IOP

10

January

2018

26

March

2018

11

April

2018

Markerless motion estimation for motion-compensated clinical 
brain imaging

Andre Z Kyme1,2 , Stephen Se3, Steven R Meikle2  and Roger R Fulton2,4

1 Faculty of Engineering and IT, University of Sydney, Sydney, Australia
2 Faculty of Health Sciences and Brain and Mind Centre, University of Sydney, Australia
3 FLIR Systems Inc., Richmond, BC V6W 1K7, Canada
4 Department of Medical Physics, Westmead Hospital, Sydney, Australia

E-mail: andre.kyme@sydney.edu.au (A Kyme)

Keywords: markerless motion estimation, feature tracking, head motion, motion-compensated imaging, PET, SPECT, CT

Supplementary material for this article is available online

Abstract
Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative 
degradation associated with voluntary and involuntary subject head motion during positron 
emission tomography (PET), single photon emission computed tomography (SPECT) and 
computed tomography (CT). However, motion-compensated imaging protocols are not in 
widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical 
motion tracking technology that allows for smooth and reliable integration of motion-compensated 
imaging protocols in the clinical setting. We seek to address this problem by investigating the 
feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. 
The method requires no attached markers, relying exclusively on the detection and matching 
of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock 
imaging scenario by comparing the estimated motion with an accurate marker-based method used 
in applications such as image guided surgery. A range of techniques to optimize performance of the 
method were also studied. Our results show that the markerless motion tracking method is highly 
accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of 
subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some 
marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is 
very robust but generally benefits from rudimentary background masking. Further marginal gains 
in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be 
achieved by capping the number of features used for pose estimation provided that these features 
adequately sample the range of head motion encountered in the study. These proof-of-principle data 
suggest that markerless motion tracking is amenable to motion-compensated brain imaging and 
holds good promise for a practical implementation in clinical PET, SPECT and CT systems.
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Motion tracking accuracy in motion-compensated imaging should be better than half the intrinsic (motion-
free) reconstructed spatial resolution of the imaging modality to keep the image degradation due to motion 
tracking below 10%. Therefore, the motion tracking accuracy requirement for state-of-the-art clinical PET, 
SPECT and CT systems is approximately 2 mm, 4 mm and 0.25 mm, respectively.

Optical motion tracking is by far the most popular method for obtaining the motion information needed 
for motion-compensated imaging because of the potential for very high accuracy (Barnes et al 2008, Schmidt 
et al 2009, Forman et al 2011, Kyme et al 2012). Most optical motion tracking systems available involve the rigid 
attachment of markers to the patient’s head, a procedure which can be time consuming and which requires  
training. A significant drawback of these methods is potential slippage of the attached markers due to non-rigid 
fixation. Although many attachment methods such as dental molds, adhesive bandages, modified neoprene caps 
and goggles have been used with some success (e.g. Bloomfield et al (2003), Ooi et al (2013) and Zaitsev et al 
(2006)), none have been adopted wholesale, and selecting a marker-based optical tracking method remains a 
basic trade-off between rigidity and convenience.

The challenges associated with marker-based optical tracking have motivated a recent push to cheaper and 
more convenient motion estimation methods, in particular markerless systems. In a markerless approach, fea-
tures used for determining object pose usually constitute abstracted elements such as points, lines, contours and 
silhouettes from one or more camera images collected under either uniform or patterned visible or infra-red illu-
mination (Szeliski 2011). Standard computer vision methods are then used for tasks such as matching features 
between images, reconstructing 3D points from features, registering point clouds and computing object pose.

Structured light techniques, in which patterned light is projected onto the object to assist feature detec-
tion and matching, have been used recently to track human head and neck motion in radiotherapy and PET  
(Santhanam et al 2011, Noonan et al 2012, Olesen et al 2012, 2013), and animal head motion in preclinical scans 
(Miranda et al 2017). The static accuracy of the first generation Microsoft Kinect (Santhanam et al 2011, Noonan 
et al 2012) appears to be on the order of a few millimeters for head translations and a few degrees for rotations. 
By comparison, the system in Olesen et al (2013) is considerably more accurate than the first generation Kinect, 
but suffers a heavy computational burden to register point clouds from successive frames. The second generation 
Kinect functions as a time-of-flight camera, collecting a complete depth map in every frame. This system was 
adapted for close-range tracking within a clinical PET scanner and shown to have improved accuracy and noise 
performance compared to the first generation Kinect (Noonan et al 2015).

Previously we developed and reported a markerless optical tracking system for motion-compensated PET 
imaging of rats (Kyme et al 2014). This method relies on the detection and matching of native object features 
using an ensemble of cameras, without the need to project patterned light. Conceptually, the approach is similar 
to the simultaneous localization and mapping (SLAM) problem in mobile robotics where robot-mounted sen-
sors are used to obtain a consistent set of landmarks (a map) in the environment at the same time as the robot’s 
motion is estimated (Se et al 2002). In this paper we describe the first stage in translating this method to clinical 
brain imaging. The two aims of our study were:

  (i)  To determine the feasibility of accurately estimating head pose using markerless facial tracking for a 
camera/subject geometry typical of diagnostic imaging in PET, SPECT and CT, and for an ethnically 
diverse subject population that would be encountered in practice; 

 (ii)  To investigate strategies to optimize the accuracy of markerless tracking of humans, in particular the 
robust handling of non-rigidity of the face.

To address these aims we conducted a volunteer study in a mock imaging scenario consistent with typical PET, 
SPECT and CT geometries. This work represents a proof-of-principle that sparse native feature-based motion 
tracking in humans, without structured light, can be used to conveniently obtain the head motion information 
needed for accurate motion-compensated imaging performed using these ubiquitous imaging technologies.

2. Materials and methods

2.1. Markerless motion tracking system
The markerless motion tracking system used in this work is based on the small animal tracking method described  
in Kyme et al (2014). Here we provide a brief overview of the hardware and algorithm and its adaptation for 
clinical imaging.

2.1.1. System hardware
The markerless motion tracking system comprises four spatially calibrated CCD cameras (Flea2, Point Grey 
Research) arranged in two pairs directed at opposite sides of the face (see figure 2(ii)). The cameras (without 
lens attached) have dimensions 29 mm  ×  29 mm  ×  42 mm (w  ×  h  ×  l) and the lens adds a further 32 mm to 
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the length. During data acquisition, frames consisting of four synchronized images (one from each camera) are 
continuously streamed to disk via a Firewire interface for offline processing. Synchronization accuracy is  <10 µs.

2.1.2. Camera calibration
The intrinsic parameters for each camera, including lens distortion coefficients, are computed using a series of 
images of a grid pattern (Bouguet 2018). Together with a set of synchronized images of a robotically controlled 
point light source, these parameters are input into a multi-camera self-calibration algorithm to compute the 
relative orientation (extrinsic camera calibration) of the camera network (Svoboda et al 2005). These calibrations 
only need to be performed once.

2.1.3. Pose estimation algorithm
For each acquired frame we detect highly distinctive native features in the four camera images (Lowe 2004). 
Features are defined by a 128-element ‘descriptor’ vector which enables reliable matching across images. Since the 
cameras are spatially calibrated, 3D landmarks can be estimated from these feature matches using triangulation. 
By amassing a database of landmarks with their associated descriptors, it is then possible to estimate the changing 
object pose. Namely, if a new camera frame shares feature descriptors with the database, we use a Gauss-Newton 
algorithm to solve for the rigid-body transformation (i.e. translation and orientation) that optimally aligns the 
database descriptors with the frame descriptors.

2.1.4. Outlier rejection
Spurious data arising in the processing pipeline, including features with poor discrimination, incorrect feature 
matches, and unrealistic pose changes, can limit the reliability of pose estimates. Therefore, several levels of 
outlier rejection are built into the algorithm. During feature matching between cameras, incorrect matches are 
detected and removed based on the epipolar geometrical constraint (Hartley and Zisserman 2004). During pose 
estimation, outliers are rejected in a two-stage process: in the early iterations of the Gauss-Newton algorithm, 
outliers are discriminated statistically (Iglewicz and Hoaglin 1993) based on the distribution of reprojection 
errors; in the late iterations, outliers are discriminated based on absolute reprojection error using a 2-pixel 
threshold.

The principles of the markerless tracking method are summarized in figure 1 and further details on the prin-
ciples and implementation can be found in (Kyme et al 2014).

2.2. Experimental setup
The experimental setup for tracking the human face in a mock clinical brain imaging scenario is shown in 
figure 2. Each component is described below.

2.2.1. Subjects
Sixteen subjects (age range 20–48 year) were recruited for this study in accordance with an approved University 
of Sydney human ethics protocol. The volunteers reclined in a chair in front of an optical bench on which the 
4-camera markerless tracking system was mounted (figure 2(i)). Unlike marker-based motion tracking methods, 

Figure 1. Principles of markerless motion estimation. (a) Overview: features (descriptors) in images from a stereo camera pair are 
matched (blue) to enable determination of 3D head landmarks using triangulation (orange). Image descriptors are also matched 
to descriptors stored in a database (green) providing the information needed for pose estimation (pink). New landmarks are then 
transformed to the initial pose and stored in the database with their descriptor (orange). Note that dashed boxes refer to processes 
and non-dashed boxes to data (inputs/outputs). Note also that we only show two cameras here for clarity, but in practice this can 
be scaled upwards arbitrarily. (b) Pose estimation: after identifying feature matches (green) between all possible features (red) in 
the landmark database and image, pose is estimated by finding the rotation, R, and translation, t, minimizing the reprojection error 
between measured and estimated feature locations.
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native feature-based motion tracking is susceptible to differences in skin tone and texture. Therefore, to properly 
test the efficacy of feature-based tracking, we tested volunteers representing a broad range of ethnic background.

2.2.2. Markerless motion tracking
The four cameras were mounted to fixed brass posts on an optical bench using pan/tilt gimbals. The cameras 
were adjusted so that each pair subtended an angle of approximately 12 deg at a nominal distance from the face of 
600 mm (figure 2(ii)). The line-of-sight of the cameras with respect to the long axis of the head was approximately 
135 deg (figure 2(i)). This was to replicate the oblique viewing angle that is often necessary inside the bore of a 
PET or CT gantry so that cameras do not obstruct detectors in the system. During the experiment, camera frames 
were collected at 30 Hz with a fixed shutter time of 5–8 ms. One of the four synchronized cameras (figure 2(i)
(C)) strobed a 5 V transistor-transistor logic (TTL) pulse at the start of each exposure to trigger the marker-based 
tracking system (see figure 2(i)(F) and section 2.2.3 below), thereby ensuring synchronization of the two systems.

2.2.3. Marker-based motion tracking
The MicronTracker marker-based motion tracking system (ClaronNav, Canada) (Kyme et al 2008) was mounted 
on a fixed tripod behind the volunteer and triggered via its general purpose input/output (GPIO) interface using 
the 30 Hz strobe signal from the markerless tracking system (figures 2(i)(D)–(F)). A large marker for high-
accuracy pose tracking was printed on a rigid substrate and affixed to a neoprene swim cap (figure 3) (n  =  14) 
or headband (n  =  2). The headband was used for two female volunteers (S12, S16) who wore head scarves for 
religious reasons; in each case the headband was placed over the head scarf.

The two tracking systems were cross-calibrated using a paper-thin, double-sided marker sharing the same 
origin. Based on the location of the marker origin at 15 positions in the common field-of-view, we obtained 
the rigid-body transform relating the two coordinate systems using a closed-form, least-squares method (Horn 
1987, Kyme et al 2008).

2.2.4. Head motion sequence
Each volunteer performed a specific sequence of head movements over a period of 2 min under steady 
laboratory lighting while 4000 frames were collected simultaneously from both motion tracking systems. To 
achieve consistent head motion across the volunteers, a 6-axis robot (Epson C3, SEIKO Corp., Japan) with a 
laser pointer mounted to the end-effector was used to execute pre-programmed motion during each study. 
The laser spot was projected onto a 3 m  ×  1.5 m wall in front of the volunteers, who were instructed to follow 
the spot using directed head movements rather than eye motion. Motion patterns of the laser spot are shown 
in figure 4 and included zig–zag, circular and square motion trajectories. The different motion patterns were 
designed to vary the speed and range of head motion and to excite all degrees-of-freedom. A video showing the 
setup for the laser spot motion sequence is included in the supplementary data (stacks.iop.org/PMB/00/0000/
mmedia).

Figure 2. Experimental setup. (i) Volunteers (A) reclined in a seat in front of an optical bench (B) on which the markerless  
tracking system (C) was mounted. A marker-based tracking system (D) situated behind the volunteer was used to track a marker (E) 
affixed to the back of the head on each trigger from the markerless system (F).  A robot (G) was used to project the beam of a  
laser pointer (H) onto the wall in front of the volunteer in a controlled motion sequence (I). (ii) Top view of the cameras showing 
their configuration with respect to the head.
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2.3. Algorithm optimizations
We investigated several methods to optimize the accuracy of the markerless tracking algorithm for human 
subjects. These methods addressed background masking, feature pruning, handling non-rigid motion, and 
frame capping.

2.3.1. Background masking
The ‘background’ is defined as any part of the image other than the face itself. This includes parts of the neck, 
clothing and hair, and objects in the environment such as the chair and walls. In general, background points will 
be partially or completely uncorrelated with head motion, thereby contributing erroneous information to pose 
estimation if included. We investigated two background masking approaches to exclude such features from pose 
computation and studied the impact of this exclusion on motion tracking performance.

2.3.1.1.Strip masking
A rudimentary background mask was formed by rejecting fixed margins around the edge of the images. The 
number of image rows and columns to reject at the top, bottom, left and right of the images was determined 
manually for each camera, resulting in four binary masks per study. Only features inside the mask were used 
during pose processing. An example of the strip mask is shown in figure 6.

Figure 3. Neoprene cap with a printed 8-point MicronTracker marker attached for marker-based tracking. Each intersection of the 
black/white regions on this marker corresponds to a point that is tracked by the MicronTracker and used for pose estimation (Kyme 
et al 2008).

Figure 4. Sequence of motion patterns projected onto the wall in front of the subject. (a) Horizontal zig–zag, medium speed; (b) 
vertical zig–zag, medium speed; (c) large rectangle CW then CCW, medium speed; (d) large circle CCW then CW, medium speed; 
(e) large fish-shaped pattern, slow; (f) slow left and right head tilt followed by forward lean and hold with eyes focused on center dot; 
(g) fast left–right head-shaking; and (h) fast up–down head nodding.

Phys. Med. Biol. 00 (2018) 000000 (17pp)
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2.3.1.2.Facial masking
A more restrictive mask was determined using 16 salient landmarks on the face: left/right eye, left/right mouth 
corner, top of the upper lip, nose tip, chin center, left/right earlobe, left/right temple area, left/right hairline, left/
right eyebrow, and forehead center. The 3D location of these landmarks was reconstructed for the first frame after 
manually determining their image-space locations in each of the four camera images. For subsequent frames the 
facial mask was computed by (i) transforming the 16 landmark locations according to the latest pose estimate; 
(ii) reprojecting the transformed landmarks onto the four camera images; and (iii) computing the convex hull of 
the reprojected points for each camera. The region within the convex hull was used as the facial mask. An example 
of the facial mask is shown in figure 6.

2.3.2. Feature pruning
During the feature matching process, features with low specificity are more likely to find multiple matches, some 
of which must necessarily be false. Such features are inherently less reliable for inclusion in pose estimation. 
Therefore, during feature matching between the database and current frame, any database features matching  >1 
image feature were systematically pruned from the database. This process maintained a trimmed database 
containing features with higher specificity.

2.3.3. Handling non-rigidity
It is not only background features whose motion may be uncorrelated with head motion; this also applies to 
features on the face itself which move non-rigidly. Usually, once a landmark is added to the database, its location 
relative to other landmarks is fixed from that frame onwards. Therefore, if the landmark moves non-rigidly, 
subsequent matches to the respective database entry will introduce an error into the pose estimation. We 
investigated two methods to address this potential source of error.

2.3.3.1.Manual exclusion
For each volunteer study we manually identified camera frames affected by obvious non-rigid motion, including 
smiling, talking or facial expressions resulting in obvious facial movement. Pose estimation was performed after 
excluding these frames.

2.3.3.2.Updating landmarks
We hypothesized that updating the location of database landmarks each time they were re-observed could 
mitigate error in the pose estimation caused by non-rigid motion. This approach was tested against the manual 
exclusion approach.

2.3.4. Frame capping
In normal pose processing (figure 1), each new frame f contributes new landmarks to the database which can 
subsequently be used for pose estimation. However, it is possible that this regime results in more landmarks than 
are actually needed for effective pose estimation. We hypothesized that a saturation point can be reached at which 
nothing is gained by adding further landmarks. To test this hypothesis we implemented a frame cap, fc  ⩽  4000, 
after which no more new landmarks were generated. Pose estimation for frames f  >  fc only used landmarks 
collected from frames f  ⩽  fc. All volunteer datasets were first processed without a frame cap and then with a 
frame cap of fc  =  1000 (i.e. ¼ of the total frames). Several studies (S03, S05, S07, S12) were also processed using 
18 increasing frame caps: fc  =  25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 750, 1000, 1500, 2000, 2500, 3000, 3500 
and 4000.

Figure 5. Generating the elliptical point cloud in the central sagittal plane of the brain. (a) Estimate major axis of the ellipse given 
known profile points; (b) grow the ellipse from the forehead along the major axis until it subsumes the location of the head marker 
(green point); (c) repeat steps (a) and (b) until a realistically oriented head ellipse is obtained, then finally fill a scaled brain ellipse 
with a regular grid of points (blue). The positive x-direction is out of the page.

Phys. Med. Biol. 00 (2018) 000000 (17pp)
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2.4. Validating motion tracking accuracy
The main goal of this work was to validate the accuracy of markerless motion tracking in a clinical imaging mock-
up scenario by comparing the markerless motion estimates to marker-based motion estimates. Unfortunately, 
characterizing rigid-body motion tracking accuracy is not a straightforward task due to the non-linear nature 
of 3D rotations. Rotations belong to the special orthogonal group of order 3, or SO(3), which means that naïve 
arithmetic comparisons of Euler-angle or pitch-yaw-roll representations of 3D rotations does not represent a 
well-defined accuracy metric for the SO(3) topology (Stavdahl et al 2005, Sharf et al 2010). A better approach, 
which respects the non-linear topology of SO(3), is to consider how the estimated motion (obtained from a 
particular motion tracking system) transforms an arbitrary point in space. This enables us to characterise the 
agreement between two motion tracking systems in terms of a Euclidean distance—that is, the discrepancy in the 
location of a test point after transformation. A zero distance implies identical accuracy performance. Since this 
comparison represents a physical distance, it is far more intuitive than a comparison of the (inter-dependent) 
Euler-angle or pitch-yaw-roll components of a 3D rotation. The latter does not easily reveal the impact of a 
motion on specific locations in the region of interest.

To validate the accuracy of markerless motion tracking, we applied our distance metric to points in the brain, 
i.e. the primary region of interest in clinical brain imaging. For each volunteer we determined a point cloud of 
uniform density in the central sagittal slice of the brain and computed the motion tracking accuracy as the root-
mean-square-error (RMSE) of the displacement (in mm) between the estimated (markerless) point locations 
and reference (marker-based) point locations, calculated over all points in the cloud:

RMSEi =

√√√√
∑

j
D(Pj, P′

j)
2

N

 (1)

where i indexes pose number, j indexes points in the cloud, N is the total number of cloud points, P and P′ are 
corresponding point clouds estimated using the marker-based and markerless systems, respectively, and D is 
a Euclidean distance operator providing the vector distance between two points in space. The RMSE was also 
computed over all poses to give a single metric of accuracy for each study.

To generate the point cloud within the central sagittal slice of the brain for each volunteer, we made use of 
the head landmarks estimated for the facial background masking approach (section 2.3.1). A five-step iterative 
process was used, illustrated in figure 5:

 (i)  Estimate the direction of the major axis of the brain ellipse based on the known landmark at the center 
of the forehead (figure 5(a)).

 (ii)  Grow the 2D ellipse from the forehead landmark, along the major axis direction, until it subsumes the 
known location of the head marker (figure 5(b)). The ratio of the minor and major axis lengths was 
fixed at 0.7.

 (iii)  Superimpose the estimated ellipse on the known head landmarks projected onto the sagittal (y-z) 
plane. Note that the sagittal plane was defined as the plane passing through the forehead landmark and 
perpendicular to the line joining the two orbital landmarks.

 (iv)  Iterate steps (i)–(iii) until a realistic head fit is obtained, i.e. when the ellipse is suitably bounded by the 
head marker, orbit and ear landmarks (figure 5(c)).

Once a realistic head ellipse was achieved for a given volunteer, a brain ellipse was obtained by scaling the head 
ellipse by 0.8 about its center (figure 5(c)). Finally, a point cloud was generated by filling the brain ellipse with a 
uniform point density of 4 cm−2.

3. Results

3.1. Subjects
The 16 volunteers (9M, 7F) represented European, Asian, Middle Eastern and African American ethnicities  
(table 1). Factors such as facial hair or spectacles, which could potentially influence the tracking, are listed in 
column 5. Frames affected by non-rigid motion (e.g. smiling, talking and facial expressions resulting in significant 
facial movement) are listed in column 6.

3.2. Motion
Average motion characteristics for all studies are shown in table 2. The average range of rotation was  >40° about 
each axis and the average speed of rotation approximately 10 deg s−1, up to a maximum of  >200 deg s−1. The 
average translational speed was 20–30 mm s−1, up to a maximum of  >0.5 m s−1. Figure 8(a) shows examples of 
different head poses reached by the volunteers during the motion sequence.

Phys. Med. Biol. 00 (2018) 000000 (17pp)
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3.3. Feature detection, feature matching and landmark estimation
Figure 6 shows representative examples of the features detected in a single camera frame for two of the 
volunteers. In general, although features were detected across the face, they tended to be more concentrated in 
areas exhibiting greater contrast and texture (e.g. stubble). Figure 7 shows the average number of landmarks used 
for pose estimation (after outliers and duplicate features were removed) for each study. These data correspond 
to using strip background masking with no other optimizations (section 2.3) and indicate that obtaining 50–70 
facial landmarks was typical for pose computation. An example of feature matching is shown at the bottom of 
figure 6. Feature matching was extremely reliable, with very few false matches recorded (only one false match 
is evident in the example in figure 6). Figure 6 also shows the effect of the facial and strip background masking 
methods in columns 3 and 4, respectively. Both methods were effective in removing outlier features on clothing.

3.4. Motion tracking accuracy
Figure 8 shows the motion tracking results for volunteer S04. Figure 8(a) shows several camera frames to 
illustrate the range of head motion for this subject, and figure 8(b) shows the markerless pose estimate for one 
of the rotational and translational DoF compared with the reference (marker-based) pose estimate. The pose 
agreement was clearly very close throughout the experiment.

Figure 9 shows an example of how the markerless tracking method maintained continuous tracking through 
large amplitude motion. In this study, the volunteer (S11) was not centered in the FoV leading to truncation of 
the head by the first camera pair (figure 9, top row). Despite this, robust tracking was maintained—evidenced by 
the green triangle lying nicely between the eyes and top of the mouth. This was because the second camera pair 
(figure 9, bottom row) provided the necessary feature data for pose estimation.

Table 3 shows the quantitative motion estimation accuracy results for all studies and optimization tests we 
performed. The global RMSE results are color-coded to aid interpretation: for the optimization tests within each 
background masking method (3A–6A for facial masking and 3B–6B for strip masking), green indicates that the 

Table 2. Summary of volunteer motion characteristicsa,b.

DoF Range (deg, mm) Speed (deg s−1, mm s−1)

x-rot 44.2 (25.2–64.9) 10.2 (0–161)

y-rot 39.3 (17.1–66.6) 8.41 (0–196)

z-rot 63.1 (44.4–106) 14.6 (0–213)

x 167 (68.5–279) 23.2 (0–521)

y 175 (90.0–270) 34.3 (0–567)

z 81.0 (22.0–135) 15.3 (0–312)

a Values shown are mean (range).
b See figure 5 for coordinate system.

Table 1. Subject-specific data.

Subject Ethnicity

Country 

of origin Sex Comment Excluded framesa

S01 European Australia M Stubble 880–905, 1400–1530

S02 European USA M 2850–3080

S03 European France M N/A

S04 European Australia M N/A

S05 Asian India M N/A

S06 European Greece M Stubble 0–159, 3880–3950

S07 European Germany F 175–460, 2480–2520, 2700–2740

S08 Middle Eastern Turkey M 1080–1149, 2457–2660, 2990–3298

S09 European Ireland F Spectacles 2695–2838, 3870–3999

S10 European Poland M 3610–3999

S11 European USA F 1800–1920, 2590–2853, 3525–3632

S12 Asian Indonesia F Head scarf 230–375, 790–870, 1145–1257, 2950–3185, 3390–3448

S13 European Australia F 2640–3050

S14 European Australia M Facial hair 2750–3176

S15 African  

American

USA F N/A

S16 Asian Indonesia F Head scarf 2405–2793, 3794–3999

a Total number of frames was 4000.

Phys. Med. Biol. 00 (2018) 000000 (17pp)
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RMSE was equal to or better than the value without optimization (2A, 2B), orange indicates that the RMSE was 
worse by  ⩽20%, and red indicates that the RMSE was worse by  >20%. The RMSE data are discussed for each 
specific optimization in the sub-sections below.

3.4.1. Background masking
Omitting background masking (table 3, test 1) had little influence on the RMSE in 12/16 studies. For the 
remaining studies (S08, S13, S14, S15) the RMSE was 2–18 times worse than the best achievable RMSE. This 
resulted from an excess of uncorrelated background features on the neck, hair or collar (e.g. figure 6) which could 
not be properly excluded using the standard outlier rejection strategies (section 2.1.4). The problem was resolved 

Figure 6. Feature detection, masking and matching. The top two rows show two examples (S16 and S01, respectively) of feature 
detection (red) with no background masking (column 2), facial masking (column 3; note that the blue crosses represent the 
landmarks used for computing the facial mask, section 2.3.1) and strip masking (column 4). The raw images are shown in column 1. 
The bottom panel shows an example of feature matching for study S01, after applying the facial mask. One false match can be seen on 
the forehead.

Figure 7. Number of landmarks used for markerless pose estimation. Data shown are the mean number of landmarks used to 
estimate the frame pose in each of the 16 volunteer studies. Error bars represent  ±  1 standard deviation.
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10

A Z Kyme et al

in all cases by including background masking. Moreover, comparing the table 3 results for tests 2A/2B, 3A/3B, 
4A/4B, 5A/5B and 6A/6B indicates that simpler strip background masking consistently outperformed the more 
restrictive facial masking approach.

Figure 8. Motion tracking results for volunteer S04. (a) Example frames showing the range of head motion during the experiment. 
Accurate tracking is evidenced by alignment of the vertices of the green triangle with the eye centers and tip of the upper lip.  
(b) Comparison of the markerless (red) and marker-based (black) estimates of the three rotational DoFs over 4000 frames.

Phys. Med. Biol. 00 (2018) 000000 (17pp)
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3.4.2. Frame capping
Comparing table 3 tests 2A/3A and 2B/3B shows that the 1000-frame cap gave inconsistent results. For some 
studies (e.g. S01–S06) it had very little impact on the RMSE; for other studies (e.g. S08, S10, S11, S15) it caused 
a moderate (<20%) to large (>20%) worsening of the RMSE as evidenced by the prevalence of orange and red 
values in rows 3A and 3B.

3.4.3. Handling non-rigidity
Manually excluding frames that exhibited obvious non-rigid motion resulted in the same or better RMSE in 
nearly every case regardless of the background masking method (compare table 3 tests 2A/4A and 2B/4B). Using 
facial masking, updating the landmarks to account for non-rigidity of features (test 6A) performed better than 
manual exclusion of frames (test 4A) in about half the studies (S01–S06, S12, S14). For the remaining studies 
(notably S10), updating the landmark locations degraded RMSE. Using strip masking, updating the landmarks 
(test 6B) performed the same or marginally better than manual frame exclusion (test 4B) for all studies. Test 6B 
also resulted in the best agreement with the marker-based tracking across all studies (RMSE 1.72  ±  0.69 mm).

3.4.4. Auto pruning
With facial masking, auto pruning unreliable database features (test 5A) usually improved the RMSE, most 
notably for S08. With strip masking, auto pruning (test 5B) resulted in approximately the same or marginally 
lower RMSE for all studies compared to test 2B. Test 5B also resulted in the second best overall (RMSE 
1.75  ±  0.69 mm).

3.5. Pose jitter
Pose jitter was characterized by the standard deviation of the residuals between the measured poses and the true 
(smoothly varying) signal (table 4). In all degrees-of-freedom except z-axis rotation (which is the least prone to 
jitter because it is the most robust parameter to estimate), marker-based measurements exhibited roughly twice 
the jitter of markerless measurements.

4. Discussion

In this study we have demonstrated the feasibility of accurately estimating rigid-body head motion of human 
volunteers using a multi-view optical tracking method without any attached markers and for a geometry 
consistent with brain imaging using the major wide-bore modalities PET, SPECT and CT. The method was 
tested in an ethnically diverse subject group and pose estimates were compared against a validated marker-based 
stereo-optical tracking system used in image-guided surgery. Image degradation due to patient motion remains 
a common problem in tomographic brain studies but has no solution that is in widespread use. We believe an 
important reason for this is the lack of an accurate and versatile marker-free motion tracking system to simplify 
integration into a busy clinical workflow. Unlike marker-based methods, the markerless tracking algorithm we 

Figure 9. Continuous tracking through large amplitude motion for S11. Robust tracking is evidenced by the green triangle joining 
the center of the eyes and the tip of the upper lip.
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present here estimates pose using only native features of the face. Improvement in accuracy and reduction in 
jitter are achieved by making use of many such features compared to the handful of features typical of marker-
based systems.

Our work is most closely related to that of Noonan et al (2015) and Olesen et al (2012, 2013) who used a 
Kinect sensor and structured light system, respectively, to try to overcome the limitations of attached markers 
in motion-compensated PET imaging. Although the consumer-grade Kinect is cheap and accessible, it does not 
easily scale to multiple devices for improved accuracy due to interference of the systems. The structured light 
approach requires a calibrated light projector and for best accuracy seems to require areas with a strong change 
in topology (such as the nose bridge). The method we have presented is highly flexible in terms of the camera 
type, size and resolution, lens choice and camera positioning. It is also highly scalable in terms of the number 
of cameras. The one-time calibration procedure remains the same irrespective of these choices. Since the acc-
uracy of optical tracking systems scales with distance and/or sensor resolution, this flexibility is very useful for  
tailoring a setup for a particular scanner and study. The method allows us to exploit features all over the face 
for pose estimation, not just in limited areas like the bridge of the nose. Determining pose from a limited set of 
sparse features is inherently more efficient than registering dense point clouds of a surface, as is done in a struc-
tured light approach. This is the main reason why processing is generally slower and more intensive for the latter. 
Finally, our algorithm is also highly modular, allowing alternative feature detection, feature matching and outlier 
methods to be easily swapped in and out for comparison.

4.1. Accuracy
Our chief aim in this study was to evaluate the accuracy of our markerless tracking algorithm against a suitable 
reference system. The RMSE metric we used to characterize motion tracking accuracy has two important 
advantages over methods which compare estimated rotation and/or translation parameters directly (e.g. by 
wrongly assuming they are independent). Firstly, it is a well-defined and intuitive Euclidean distance metric for the 
non-linear SO(3) manifold. Secondly, it has intrinsic clinical relevance because it quantifies accuracy at or near the 
organ of interest rather than at points used to derive the motion (which are often far from the organ of interest).

Notwithstanding the soundness of the metric for quantifying motion tracking accuracy, there are several 
reasons why the accuracies we report here probably underestimate the performance of the markerless track-
ing algorithm in a clinical situation. Firstly, typical rotations and shifts of the head during tomographic brain 
imaging procedures are reported to be  ⩽5 deg and  ⩽7 mm (Ruttimann et al 1995, Beyer et al 2005, Dinelle et al 
2006), respectively, although values for children, the elderly and patients with disorders impacting their control 
of movement could potentially be larger (Dinelle et al 2006). In our study, however, the average and maximum 
range and rate of head motion (table 2) far exceeded these normal reported values. This was a deliberate exper-
imental design choice so we could test the performance of markerless tracking under extremely challenging con-
ditions. In particular, it forced the algorithm to find viable features over a much larger portion of the face than 
would usually be required in practice. As a result, the accuracies we obtained are probably conservative, and the 
performance for typical clinical motion would likely improve. Secondly, as for all systems in which markers are 
attached to the head non-invasively, there was the potential for marker slippage in our marker-based reference 
motion tracking system. We expect the slight non-rigidity of the neoprene cap arrangement (and head band) 
to manifest as a baseline (dc) error when comparing the reference and markerless estimates. Thirdly, the cross-
calibration between the reference and markerless systems similarly introduces a baseline level of error into the 
comparison of pose estimates. It was not possible to quantify the relative contribution of these errors from our 
data, however it is instructive that we have previously observed an accuracy of ~0.1 mm for the markerless algo-
rithm in an animal phantom study (Kyme et al 2014). Overall, the mean accuracy of 1.7 mm we report here for 
markerless tracking easily satisfies the motion tracking requirements for PET and SPECT. And for individual 
studies, the conservative accuracy estimate was as low as 1 mm. Further work is needed to determine if the acc-
uracy of markerless tracking is also acceptable for CT with its higher spatial resolution.

Table 4. Pose jitter comparisona.

DoF Markerless Marker-based

x-rot 0.10 0.20

y-rot 0.08 0.18

z-rot 0.10 0.07

x 0.92 1.93

y 1.28 2.18

z 0.37 0.65

a Values represent the standard deviation of measured poses with respect to the true signal, which is assumed to be smoothly varying 

like the laser spot trajectory. Units are deg for rotations and mm for translations.

AQ1
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4.2. Algorithm optimization
We investigated a variety of strategies to optimize the accuracy performance of markerless tracking of human 
faces in the brain imaging mock-up geometry. Our results suggest that background masking is an important pre-
processing step for markerless tracking but that a highly subject-specific mask is unnecessary—and in some cases 
is counter-productive. A simple strip mask sufficed to remove some of the background features, improving the 
relative proportion of facial features and thereby allowing our outlier rejection methods to function successfully. 
In contrast, pose estimation occasionally failed if background masking was omitted or if a more restrictive 
background mask was used due to unreliable features becoming dominant. Our outlier rejection methods in this 
case were insufficient to recover a robust pose (e.g. S07, S16).

Manually excluding frames corrupted by non-rigid motion generally improved the RMSE as expected. 
However, it is somewhat surprising that the RMSE improved by so little in most cases (study S08 was the excep-
tion). This suggests an important role played by the normal outlier rejection methods we have built into the 
algorithm (section 2.1.4) to nullify the impact of non-rigid features in the pose estimation. Information con-
tributed by non-rigid feature locations seems to be easily rejected during our routine checks of reprojection 
error by virtue of it being inherently inconsistent with a rigid-body pose solution. Further evidence of the effec-
tiveness of our outlier rejection methods was the limited benefit we observed for database pruning—spurious 
feature matches were effectively discarded without requiring any dedicated pruning. When pruning was com-
bined with the 1000-frame cap (data not shown), the RMSE was much more likely to degrade, suggesting that 
pruning the database can have the unwanted effect of removing reliable features. Therefore, a better approach 
may be to prune a feature only if it exhibits consistent unreliability, evidenced by multiple matches over multi-
ple frames (Se et al 2002).

Imposing a 1000-frame cap for populating the database with landmarks showed inconsistent results across 
the 16 studies. We explored this further by studying the RMSE as a function of frame cap for six of the studies. 
Figure 10 shows the results: the RMSE plateaued beyond a certain frame in all cases. The plateau occurs when the 
landmarks in the database support estimation of the full range of head motion sampled by the cameras during 
the study. For some volunteers this point was reached as early as frame 150/4000 and there was little advantage 
in continuing to add more landmarks to the database from subsequent frames. Conversely, in about half the 
studies there were insufficient landmarks in the database by frame 1000 to estimate the full range of motion 
during the acquisition, thus leading to an increase in the RMSE when a 1000-frame cap was imposed. In some 
volunteers (e.g. S08 and S10) the plateau did not occur until much later (frame 3000–4000); only then had a suf-
ficient number of landmarks accumulated to support accurate pose estimation for all frames. The frame-capping 
behavior has an important implication for motion tracking: the ability to cap at an earlier frame means fewer 
features in the database (figure 10, right axis) which in turn means faster feature matching and improved effi-
ciency of motion estimation. In practice, one can imagine performing a brief ‘priming’ scan in which the patient 
is instructed to move their head through a range of motion which is larger than expected. During this scan a small 
but sufficient database of features would be amassed to allow efficient and accurate pose estimation during the 
ensuing imaging study. Clearly, such a priming scan would only be possible for compliant patients.

Figure 10. RMSE and number of landmarks as a function of the frame cap, shown for six studies. The left and right vertical axes 
show global RMSE (broken lines) and cumulative landmarks (unbroken lines), respectively. On the right vertical axis, the short 
colored bars indicate the number of landmarks for each study at the lowest frame cap corresponding to a stable RMSE.
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In summary, our investigation of optimization strategies suggests that consistently accurate results for mark-
erless tracking are achieved by applying the base algorithm in conjunction with a simple background masking 
procedure. Other strategies such as updating landmarks each time they are re-observed can provide marginal 
gains in accuracy by better handling non-rigidity of the face. Capping the database is certainly advantageous to 
speed up pose estimation.

4.3. Other performance aspects
The reduced jitter of pose estimates derived from the markerless approach is consistent with the smooth robot-
controlled motion profile of the laser spot being tracked by the volunteers. Lower variance compared to marker-
based estimates likely results from the fact that there are considerably more landmarks (~50–70, figure 7) 
available for computing pose compared to the 8 fixed landmarks on the marker (figure 3) (Gao et al 2007).

We made no attempt in this work to optimize the speed of pose processing. Nevertheless, it was possible to 
estimate the pose at several frames per second provided the database was not overly populated. For a long clini-
cal scan (up to 1 h) with frames acquired at 20–30 Hz, some optimization would be needed so that processing 
is completed in an acceptable time. Limiting the size of the database (as discussed above) is one option; GPU 
acceleration of the feature detection and matching processing is also feasible. We are currently also exploring the 
feasibility of improving the speed and accuracy of pose estimation using alternative feature detection and match-
ing approaches.

All of our experiments were performed under stable laboratory lighting. Achieving stable lighting in a clini-
cal setting is usually feasible, however further work is required to test the stability of our method under changing 
lighting conditions and the presence of shadows.

4.4. Clinical outlook
It was beyond the scope of this work to implement the markerless motion tracking method in a clinical imaging 
system (PET, SPECT or CT). However, the promising results we have reported suggest this is the obvious next 
step. Future work will involve implementing and validating the method in clinical PET, SPECT and CT systems, 
including a quantitative comparison of event-by-event based motion correction using markerless and marker-
based motion estimates.

The relative positioning of the head and tracking system in our experimental design was chosen to reflect the 
geometry needed for a practical implementation in a clinical PET, SPECT or CT system. However, as mentioned 
above, changing the number and/or positioning of cameras to meet the specific requirements of a particular 
scanner is eminently feasible. The geometric setup we describe in this work does not directly address magnetic 
resonance imaging (MRI), which presents some unique challenges for motion tracking (Forman et al 2011). 
To achieve the highest possible tracking accuracy in MRI requires the use of MRI-compatible in-bore cameras 
(Maclaren et al 2012). This produces an extremely close range tracking situation which differs from the longer 
range we simulated here for PET, SPECT and CT. Secondly, the presence of a head coil in MRI to detect small sig-
nal changes in the brain dramatically limits the area of the face visible to a camera. Thus pose must be determined 
from features confined to small regions of the face within the line-of-sight of the cameras. We are currently inves-
tigating ways of adapting our markerless approach to these particular geometrical constraints in MRI (Kyme et al 
2016).

It is acknowledged that considerable challenges may restrict head tracking in a clinical setting. For example, 
patients may have gross facial changes due to trauma, surgery, bandages or attached medical devices that limit 
the application of our approach. Patients may also exhibit gross facial motion (e.g. due to fear, pain, anxiety) that 
may be outside the range of expressions that we tested here.

5. Conclusion

In conclusion, we have adapted a motion tracking method originally developed for animals for use in motion-
compensated human brain imaging. Compared to traditional marker-based motion tracking approaches, 
the method relies only on the detection of native facial features, with no requirement for attached markers. 
Modeling the potentially oblique motion tracking geometry encountered in PET, SPECT and CT imaging, we 
obtained pose agreement within 2 mm of a marker-based system used as a gold standard. We also demonstrated 
robust performance of pose estimation in the presence of non-rigid motion. Our results indicate the potential 
to incorporate this versatile motion tracking technique into motion-compensated imaging protocols. The 
versatility of performing motion tracking without attached markers could help to overcome the barriers that 
have prevented motion-compensated imaging from being widely adopted in research and clinical studies, despite 
much evidence indicating its effectiveness. Our future efforts will focus on implementing the motion tracking 
method on clinical systems.
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