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Abstract

Ground plane perception is of vital importance to human mobility. In order to develop a stereo-based mobility aid
for the partially sighted, we model the ground plane based on disparity and analyze its uncertainty. Because the mobil-
ity aid is to be mounted on a person, the cameras will be moving around while the person is walking. By calibrating the
ground plane at each frame, we show that a partial pose estimate can be recovered. Moreover, by keeping track of how the
ground plane changes and analyzing the ground plane, we show that obstacles and curbs are detected. Detailed error ana-
lysis has been carried out as reliability is of utmost importance for human applications. © 2002 Elsevier Science B.V. All
rights reserved.

Keywords: Ground plane; Stereo; Mobility aids; Error analysis; Pose estimation; Obstacle detection; Curb detection

1. Introduction

The motivation for this work is to build a portable
mobility aid for the partially sighted using vision as
the primary sensor. There are over 40 million partially
sighted people worldwide who could benefit from
some form of aid. The most obvious problems they
face are moving around in their environment without
bumping into obstacles and reaching their destinations.

There has been some progress in using sonar
[16,25,26,30] for mobility aids since the 1960s, but
the development of vision is comparatively recent
due to lowered camera cost and increased processing
power. Vision-based mobility aids projects [5,32] in
the 1980s had considerable limitations due to the lack
of technology and powerful processors then.
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Gibson [14] noted that ground plane perception is
of vital importance to human and aviation mobility.
Quoting from Gibson, “there is literally no such thing
as a perception of space without the perception of a
continuous background surface”. His “ground theory”
hypothesis suggested that the spatial character of the
visual world is given not by the objects in it but by
the ground and the horizon.

Obstacle detection using the ground plane for au-
tonomous guided vehicles (AGVs) has been investi-
gated by various researchers [4,6,13,11,33]. However,
as we will discuss in Section 6.2, obstacle detection
algorithms for AGVs cannot be used readily in mobil-
ity aids.

Moreover, the ground plane constraint has been
used for traffic and pedestrian tracking on road scenes
[29,31], and also in planetary rover perception [18].
They have only used the ground plane as a constraint
for the extraction of objects, but did not model the
ground plane itself.
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In recent years, there has been quite a number of
ongoing research projects [3,8,9,17,19] on mobility
aids. Some of them use vision while some use sonar.
Some of them provide merely navigational assistance
whereas some also provide obstacle detection func-
tion. However, ground plane modeling has not been
investigated in any of these projects.

Among the sensing devices to obtain 3D representa-
tion of an environment, vision has distinct advantages
over sonar, as it is passive with higher angular resolu-
tion and nearly all surfaces have diffuse reflectances.
We use a grayscale stereo vision system in our back-
pack system [22,23].

A mobility aid needs to synchronize with the world
frame to frame and it should track the ground plane
fairly accurately. It should also provide accurate infor-
mation about the flatness of the ground plane ahead
to ensure user safety [7].

The objective of this paper is to present the the-
oretical foundation and analysis used to develop our
mobility aid. The prototype specifications and per-
formance characteristics are discussed in [22,23].
We will demonstrate that the modeling and track-
ing of the ground plane are essential for a mobil-
ity aid, because it allows obstacle detection and
curb detection, which are the most basic require-
ments of any mobility aid to enable independent
travel.

Fig. 1. The ground plane geometry and transformations between world coordinates and image coordinates.

In the next section, we provide an analytical formu-
lation of the ground plane disparity. Random sample
consensus (RANSAC) is proposed for fitting ground
planes in arbitrary scenes. We then carry out error
analysis on ground plane fitting and analyze how the
ground plane changes when the user moves. More-
over, three applications using this ground plane model
are outlined: pose estimation, obstacle detection and
curb detection. Finally, we conclude and discuss some
future work.

2. Ground plane model

Li et al. [20] have shown that the ground plane
disparity can be expressed as a linear relationship in
terms of the image pixel coordinates. In Fig. 1, the
camera tilt isθ andh is the camera height. For a scan
line subtended atα from the optic axis, its depth with
respect to the camera centered coordinates system is
Z(α) = h cosα/ cos(φ + α) whereφ = 90◦ − θ .
Therefore its disparity is

δ(α) = f I

Z(α)
= f I

h
( cosφ − sinφ tanα),

wheref is the focal length andI the interocular dis-
tance. For a typical pinhole camera model, tanα =
yc/f whereyc is the vertical camera coordinate.
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The inset in Fig. 1 shows the relationship between
the camera coordinates(xc, yc) and the image pixel
coordinates(u, v), we havev0 − v = kvyc andd =
kuδ where(u0, v0) are the image center coordinates,
ku andkv are the camera intrinsic parameters,d is the
disparity in pixels. We have

d =
(

fIku
h

cosφ − Iv0ku

hkv
sinφ

)
+
(

Iku
hkv

sinφ

)
v

= k1 + k2v.

Because the camera tilt, height and the intrinsic pa-
rameters are fixed,k1 and k2 denote some constant
values. Allowing noise and errors in camera geome-
try, we useu as well for a better fit. The ground plane
disparity map is

d = au + bv + c, (1)

in which (a, b, c) are the ground plane parameters and
a should be very small. Therefore, a ground plane can
be fitted to image points that have been stereo matched
without knowing the intrinsic camera parameters.

Three points are enough to define a plane, but
the more points we have, the more accurate the
ground plane is. Given more than three points, we
do least-squares fitting for the parameters by orthog-
onal regression [1], which minimizes the shortest
distances from the points to the plane. Re-arranging
Eq. (1), we haveau + bv − d + c = 0, and so we
minimize

C =
n∑

i=1

(p�
i l)2

l2a + l2b + l2c
,

wherepi = (ui, vi, di,1) andl = (la, lb, lc, ld).
This problem is equivalent to

min
l

C = l�Ql,

subject tol2a + l2b + l2c = 1, in whichQ = ∑n
i=1 pip

�
i .

The Lagrangian for this is given by

C′ = l�Ql + µ(l2a + l2b + l2c − 1),

and setting∂C′/∂l = 0, we have

Ql + µ[la, lb, lc,0]� = 0.

The solution for(la, lb, lc) is the eigenvector corre-
sponding to the smallest eigenvalue of


q11 − q2
14

q44
q12 − q14q42

q44
q13 − q14q43

q44

q12 − q14q42

q44
q22 − q2

24

q44
q23 − q24q43

q44

q13 − q14q43

q44
q23 − q24q43

q44
q33 − q2

34

q44




,

and ld = −(laq41 + lbq42 + lcq43)/q44 where qij

denotes the(i, j)th element of matrixQ. Then, the
ground plane parameters(a, b, c) are obtained as
(−la/ lc,−lb/ lc,−ld/ lc).

3. RANSAC ground plane fitting

We employ the Sobel edge detector and PMF [24]
feature-based matching algorithm to the stereo images
to obtain feature disparity. These algorithms are cho-
sen because of their performance and computational
efficiency.

In order to obtain the ground plane parameters for
a certain configuration, we need to calibrate using a
ground scene without any obstacles. However, it may
occasionally be difficult to find an obstacle-free scene,
we propose using RANSAC [12] to calibrate arbitrary
scenes and the procedure is as follows [28]:

1. Randomly select three feature points to fit a plane,
check each of all the feature points whether or not
it satisfies this plane and count the number of sup-
porting points.

2. Repeat step 1 form times, select the triple with
maximum support and do least-squares ground
plane fitting to this triple with all its supporting
points.

Provided that there are sufficiently many ground pl-
ane features, a plane will be fitted to the ground plane
features while obstacle features are regarded as outlie-
rs, because they are unlikely to be all lying on the same
plane, but the ground plane is the dominant plane.

The probability of a good sample (all inliers) is
given by 1−(1−(1−e)p)m wheree is the contamina-
tion fraction,p the sample size andm the number of
samples. The sample size in this case is 3 because we
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Fig. 2. Left images from an image sequence with slight camera motion between frames.

need three points to define a plane. Assuming the per-
centage of contamination for a typical scene is 75%,
to achieve 99% probability of a good sample, we need
to repeat the sampling around 300 times.

Fig. 2(a) shows a ground scene with some obsta-
cles and the region of interest is indicated. The
ground plane disparity map found isd = −0.0127u+
0.2917v + 3.2582.

4. Error analysis

There are many sources of error in the process of
capturing images, finding features, stereo matching
and then disparity fitting. Some investigation of image
quantization and error models has been carried out in
[15,21]. Here, we will look into feature detection in-
accuracies and ground plane fitting errors.

Fig. 3. Image pixel backprojections. (a) Image coordinatey corresponding to varying ground plane distanceY . (b) Pixels corresponding
to different sizes of region on the ground.

In Fig. 3(a), Y represents the ground plane dis-
tance andy represents the image coordinate. Express-
ing Y = f (y), becausey is sampled uniformly in the
image,yi+1 = yi + δy whereδy is a constant, then
Yi+1 − Yi = f (yi + δy) − f (yi) = δYi . It is intuitive
that δYi is not constant, but it becomes larger as the
pixel moves higher in the image.

Assuming the features are detected and matched to
pixel accuracy, Fig. 3(b) shows that one pixel repre-
sents a different area on the ground from another [21].
The camera sampling process averages the intensity
and so the same feature further away will have a small-
er effect on the image as a result of averaging over a la-
rger region. Moreover, we cannot determine accurately
the position of the feature as it can be anywhere in the
region. Furthermore, there are also image distortions
on the sides due to vignetting of the camera lens. These
inaccuracies affect the ground plane disparity fitting.
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Referring to Fig. 1, to transform from the world
coordinates(Xw, Yw,Zw) to the image coordinates
(u, v):



u

v

1


≡ MintrinsicMprojectionMrotationMtranslation



Xw

Yw

Zw

1


,
(2)

where≡ denotes projective equality,

Mtranslation=




1 0 0 0

0 1 0 0

0 0 1 −h

0 0 0 1


 ,

Mrotation =




1 0 0 0

0 cos(90− θ) sin(90− θ) 0

0 sin(90− θ) − cos(90− θ) 0

0 0 0 1


,

Mprojection=




1 0 0 0

0 1 0 0

0 0 1 0


 ,

Mintrinsic =




f ku 0 u0

0 −f kv v0

0 0 1


 .

Considering points on the ground plane only for which
Zw = 0, we have

u = f kuXw

Yw cosθ + h sinθ
+ u0, (3)

v = −f kv(Yw sinθ − h cosθ)

Yw cosθ + h sinθ
+ v0, (4)

⇒

Xw = (u − u0)(Yw cosθ + h sinθ)

f ku
,

Yw = h(f kv cosθ + (v0 − v) sinθ)

f kv sinθ + (v − v0) cosθ
. (5)

Using these equations, we can compute the distance on
the ground between two adjacent pixels on two con-
secutive scan lines in the image and hence the area of
the ground region corresponding to a particular pixel.

For the experiments carried out,h = 1.25 m,θ = 15◦,
f ku = 560,f kv = 470,u0 = 120 andv0 = 120. We
compare among three positions: 2.5 m, 4 m and 5.5 m.
Because the pixel intensity is proportional to the pho-
ton energy arriving from the corresponding region, it
is obtained by averaging the energy from that region.
Considering its analogue in the 1D case, we take the
square root of the region area and look at this averag-
ing effect. It can be regarded as a standard step func-
tion for the convolution operator centered at the origin
and stretching between±b.

Fig. 4(a) shows the smoothing operators and
Fig. 4(b) shows their Fourier transforms. An edge
detector acts like a high pass filter. Arbitrarily assum-
ing that it allows frequencies higher than 10 to pass
through, as shown in Fig. 4(b), the amplitude of the
2.5 m case abovew = 10 is much higher than that of
the 4 m case which is in turn higher than the 5.5 m
case. As a result, the probability of an edge being
detected in the 2.5 m region is higher than in the 4 m
region which in turn is higher than in the 5.5 m re-
gion. This implies that features in the closer region
are fitted better in the ground plane calibration.

In Section 2, we obtained a least-squares fit for
the ground plane parameters. However, as the image
coordinates and the disparities are not noise-free, we
study the covariance of(a, b, c) because this tells
us how much confidence we can have in our ground
plane estimate.

To analyze the covariance ofl, we follow the tech-
nique from Faugeras [10, pp. 151–158]) for the con-
strained minimization case. Assuming thatl0 has been
obtained by minimizing the criterion functionC(p0, l)

subject to the constraint in Section 2, this defines im-
plicitly a function f such thatl = f (p) in a neigh-
borhood of(p0, l0). We define the vectorΦ(p, l) by

Φ(p, l) =




Q[1]l −
(
la

lc

)
Q[3]l

Q[2]l −
(
lb

lc

)
Q[3]l

Q[4]l

l2a + l2b + l2c − 1




,

whereQ[i] denotes theith row of matrixQ. The Jaco-
bian off is given by∇f = −(∂Φ/∂l)−1(∂Φ/∂p).
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Fig. 4. Comparison of feature detection in different regions: 2.5 m (b = 0.39), 4 m (b = 0.75) and 5.5 m (b = 1.16). (a) The averaging
operators. (b) Fourier transforms of (a).

Table 1

V = σ 2




(
1 + l2a

l2c

)
C + q11 + l2a

l2c
q33 − 2la

lc
q13 q12 + la lb

l2c
q33 − la

lc
q23 − lb

lc
q13 q14 − la

lc
q34 0

q12 + la lb

l2c
q33 − la

lc
q23 − lb

lc
q13

(
1 + l2b

l2c

)
C + q22 + l2b

l2c
q33 − 2lb

lc
q23 q24 − lb

lc
q34 0

q14 − la

lc
q34 q24 − lb

lc
q34 q44 0

0 0 0 0




Assuming that the errorσ 2 at each point is indepen-
dent and that the errors are isotropic, the covariance
matrix Λp for the original data is block diagonal in
form with pi ’s covariance matrix as theith block, as-
suming all points have the same diagonal covariance
matrix. Currently,σ is set to 1 pixel, but verification
by further experiments is required. The covariance
matrix for l is given by

Λl = ∇fΛp∇f � =
(
∂Φ

∂l

)−1

V

(
∂Φ

∂l

)−�
,

whereV is given in Table 1.
Becauselc is always close to unity and its variance

is smaller than the others by a magnitude of at least
2, we take the variances fora, b andc to beσ 2

la
, σ 2

lb

andσ 2
ld

respectively [2].

This error analysis of the ground plane allows us to
estimate the uncertainty in the various applications, so
that the user can be informed about the reliability of
the system.

5. Ground plane tracking

As the camera undergoes six degrees of freedom
motion, the perceived ground plane changes. It is intu-
itive that translations in the horizontal directions and
yaw (rotation about the vertical axis) have no effect
on the ground plane.

Let (l, m, n) be the translational motion expressed
in the world coordinates system(Xw, Yw,Zw), we
consider the effect in theZw direction. In Fig. 5(a)
for the same(u, v) in the new configuration, the



S. Se, M. Brady / Robotics and Autonomous Systems 39 (2002) 59–71 65

Fig. 5. New and old configurations for the ground plane. (a) Due toZw movement. (b) Due to pitch. (c) Due to roll.

backprojected point is further away, and so the dis-
parity decreases. From Eq. (5),Yw = hF(v) where
F(v) = (f kv cosθ + (v0 − v) sinθ)/(f kv sinθ +
(v − v0) cosθ) in which θ , f kv andv0 are fixed.

Similarly, for that same image point in the new con-
figuration,Y ′

w = (h + n)F (v) and so the disparity at
Yw: d = k/hF(v) wherek is some constant. The dis-
parity atY ′

w:

d ′ = k

(h + n)F (v)
= k

hF(v)

(
1

1 + n/h

)

= d

(
h

h + n

)
. (6)

Let (p, r, y) be the rotational motion corresponding to
pitch, roll and yaw, we look at the effects of pitch and
roll. The pitch is the rotation about the axis through

the camera optical centered parallel to theXw axis, as
shown in Fig. 5(b), whereθ becomesθ + p.

Taking partial differentials of Eqs. (3) and (4) with
respect toθ and simplifying, we can find how the
image coordinatesu andv change whenθ changes for
the same 3D point:

+u = f kuXw(−(v − v0)/f kv)

f kuXw/(u − u0)
p

= (v − v0)(u − u0)

−f kv
p, (7)

+v = −f kvp − (v − v0)
2

f kv
p. (8)

From Eq. (1), for the same 3D point now and hence
the same disparity, we haved = a(u′ −+u)+ b(v′ −
+v)+c. But for some typical values such asu0 = 120,
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v0 = 120, p = 0.1, f kv = 470, the factora+u is
so small that it is negligible. Moreover, for+v, the
magnitude of the second part((v − v0)

2/f kv)p is
much smaller than the first part−f kvp, and so it is
relatively negligible. We take+v as just−f kvp.

Roll r is the rotation about the axis through the
camera optical center parallel to theYw axis, as shown
in Fig. 5(c). For small angler, the transformation from
the old axes to the new axes:




x′

y′

1


=




cosr sinr 0

− sinr cosr 0

0 0 1






x

y

1




≈




1 r 0

−r 1 0

0 0 1






x

y

1


 .

UsingMintrinsic from Eq. (2), we haveu = u0+f kux;
v = v0 − f kvy

u′ = u0 + f ku(x + yr) = u + f ku

f kv
(v0 − v)r, (9)

v′ = v0 − f kv(y − xr) = v + f kv

f ku
(u − u0)r. (10)

From Eq. (1), for the same 3D point and hence the
same disparity, we have

d = a

(
u′ − f ku

f kv
(v0 − v)r

)

+b

(
v′ − f kv

f ku
(u − u0)r

)
+ c.

Although(f ku/f kv)(v0−v)r is of the magnitude 10,
a is of magnitude 10−3 usually, so it can be ignored.
From Eqs. (9) and (10)

d = u′
(
a − f kv

f ku

br

1 + r2

)
+ v′

(
b

1 + r2

)

+
(
c + br

1 + r2

[
rv0 + f kv

f ku
u0

])
,

but the magnitude ofrv0 is a tenth of that of(f kv/

f ku)u0 and so is negligible. Using only the first order
terms, the overall effects of translational and rota-

tional motion:


a′

b′

c′


= f






a

b

c


 ,




p

r

y


 ,




l

m

n






=




h

h + n

(
a − f kv

f ku
br

)
h

h + n
b

h

h + n

(
c + bfkvp + f kv

f ku
bru0

)




. (11)

We have carried out numerous simulations to validate
the appropriateness of these approximations and to
verify this formula, which tells us how the ground
plane changes as the camera moves around.

6. Applications

In this section, we will describe the various uses of
the ground plane model and its error analysis in our
mobility aid.

6.1. Pose estimation

Because only three of the six degrees of freedom
affect the ground plane, tracking the ground plane
gives us estimates for these three parameters. Using
Eq. (11), from the ground plane parameters before and
after motion, we can estimate its vertical translation
n, roll r and pitchp:




n

r

p


 =




h

(
b

b′ − 1

)
(
f ku

f kv

)(
a

b
− a′

b′

)
1

f kv

(
c′

b′ − c

b

)
− u0

f kv

(
a

b
− a′

b′

)




.

(12)

Using the first order error propagation formulae [2],
we can also compute the variances of these parameters.

Figs. 2(b)–(d) show the same scene with some
camera motion between frames carried out. The rela-
tive movement between frames measured manually is
shown in Table 2. Ground plane parameters(a, b, c)
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Table 2
The camera movement between frames measured manually, where(l, m, n) are the translational motion and(p, r, y) are the rotational
motion

Measured motion l (cm) m (cm) n (cm) p (deg) r (deg) y (deg)

Figs. 2(a) and (b) 0 20 0 −3 0 0
Figs. 2(b) and (c) 0 0 10 0 0 0
Figs. 2(c) and (d) −10 0 −10 0 0 0

Table 3
The ground plane parameters and their standard deviations for the various frames

Image a (σa) b (σb) c (σc)

Fig. 2(a) −0.0127 (0.0023) 0.2917 (0.0015) 3.2582 (0.4453)
Fig. 2(b) −0.0161 (0.0023) 0.2871 (0.0015) −2.0204 (0.4489)
Fig. 2(c) −0.0148 (0.0022) 0.2667 (0.0015) −3.3461 (0.4140)
Fig. 2(d) −0.0392 (0.0023) 0.2896 (0.0015) 2.3639 (0.4629)

fitted to each image together with their standard
deviations are tabulated in Table 3.

Assuming a flat ground plane, we can compute
the estimated camera motion between frames using
Eq. (12). Therefore, by fitting ground plane at each
frame, we can track the ground plane parameters and
recover a partial pose estimate of the camera motion.
From the ground plane error analysis, we can also esti-
mate the standard deviation of the camera pose which
provides an indication of the confidence of the system.
The results shown in Table 4 show that fairly good
estimates are obtained.

The more accurate the ground plane parameters are,
the better the pose estimates will be. The accuracy of
the ground plane parameters depends on the number
of features found, how accurate these features are and
also their distribution, for example a uniform distribu-
tion of the ground plane features is better than a clus-
tered one. Because a more or less same scene is used
in these images, we obtain ground plane parameters
with similar variances in Table 3.

Table 4
Partial camera pose estimated and their standard deviation, wheren is the vertical movement,p is the pitch andr is the roll

Estimated motion n (σn) (cm) p (σp) (deg) r (σr ) (deg)

Figs. 2(a) and (b) 1.9227 (0.8039) −3.7376 (0.4913) 0.7338 (0.647)
Figs. 2(b) and (c) 9.3243 (0.9627) −1.0289 (0.4970) −0.0305 (0.6590)
Figs. 2(c) and (d) −9.6133 (0.6726) 1.9815 (0.5014) 4.665 (0.6610)

6.2. Ground plane obstacle detection

Since only ground plane features satisfy our dis-
parity map, any feature that does not is considered
as an obstacle, hence the ground plane can be used
for obstacle detection [28]. From the error analysis in
Section 4, we can estimate the variances for the ground
plane parameters and know how reliable our ground
plane parameters are. Therefore, we can set a thresh-
old (e.g. a 95% confidence level range) for the obstacle
detection process, i.e. only features whose measured
disparities are outside of the expected ground plane
disparity range will be considered as obstacles. As a
result, the lower part of an obstacle may not be de-
tected as its disparity difference may not be significant
enough.

Horizontal translations and yaw rotation do not af-
fect the ground plane, and a particular feature is still an
obstacle irrespective of the camera horizontal transla-
tions or yaw rotation. On the other hand, vertical trans-
lation, pitch and roll do affect the obstacle detection
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Fig. 6. Obstacles detected by dynamic ground plane recalibration for: (a) Fig. 2(a); (b) Fig. 2(b); (c) Fig. 2(c); (d) Fig. 2(d).

process. For example, if the camera moves downward,
ground plane features are now treated as obstacles if
the previous disparity map is used.

Therefore, for wheeled mobile robots whose camer-
as only undergo horizontal translations and yaw rotat-
ion, a fixed one-time ground plane calibration is
sufficient. However, for cameras mounted on human
or legged robots, dynamic ground plane recalibration
is necessary, unless there are some other extrinsic
sensors such as digital compass and inclinometer to
measure how the cameras have moved, in which case
Eq. (11) can be used to predict the new ground plane
parameters.

Without ground plane recalibration at each frame,
obstacles are detected only in the first frame but not

Fig. 7. Obstacle detection probability at various distances.

in the subsequent frames. Figs. 6(a)–(d) show the dy-
namic recalibration obstacle detection results for the
scenes in Fig. 2, with most obstacle features correctly
identified. From the ground plane error analysis, we
can also estimate the obstacle detection probability to
provide an indication of the reliability, as shown in
Fig. 7.

6.3. Curb detection

A curb can be characterized as a step change in
the height of the ground plane, i.e. there exists a
discontinuity in the disparity map. Therefore, dur-
ing the ground plane fitting stage, if the curb step is
sufficiently large, identifying the discontinuity can
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Fig. 8. Ground plane disparity fitting for a synthetic curb scene: using just points in the lower region, upper region and whole region.

localize the curb. Two planes of different heights can
be fitted to features either sides of the hypothesized
curb. Fig. 8 shows the disparity fit of a synthetic curb
scene, a discontinuity and hence two regions can be
observed.

However, this relies on having sufficiently many
ground plane features on both sides of the curb. In
real curb images, we may need to exploit the pres-
ence of curb edges and road markings, as image ev-
idence for a local separation between the two planes
[27].

Letdinsideanddoutsidebe the disparities for the inside
and outside regions respectively:

• Hstep-down if dinside is significantly greater than
doutside;

• Hstep-up if dinside is significantly less thandoutside;
• Hno-step otherwise.

Using the error propagation formulae [2] and the
ground plane variance, we can compute the uncer-
tainty for the disparities and test against these three
hypotheses whether it is likely to be a step-down or
step-up or no step at all.

7. Conclusion

In this paper, we firstly motivated the need for a
vision-based mobility aid for the partially sighted and
the importance of ground plane perception for hu-
man mobility. We described our ground plane disparity
model as a planar map linear to the image coordinates.
Error analysis has been carried out regarding the fea-
ture extraction and the ground plane fitting processes,
which is important so that we know how reliable the
estimation is.

Moreover, we analyzed the effect of camera move-
ment on the ground plane. Then, three applications
using the ground planes are described with some
experimental results are shown. We obtained a par-
tial pose estimate by tracking how the ground plane
changes. Obstacles and curbs are hazards in the en-
vironment that the partially sighted need to be made
aware of, which are detected using the ground plane.

Our contribution also includes the detailed error
analysis carried out. Reliability and quantitative mea-
sures are of utmost importance for real applications
to be used by human in particular. Although the
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algorithms have been developed for a mobility aid,
they are also useful for mobile robots and legged
robots in general. However, real-time processing for
these algorithms on our prototype has not yet been
realized.

For our ground plane fitting, we have only investi-
gated the feature-based stereo approach, but we should
also consider the correlation-based approach which is
useful for environments such as textured surfaces or
carpeted floor. Using a combination of feature-based
and correlation-based stereo should allow the system
to maximize its usability in various scenes.
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